28 posts tagged with "intelligent edge"

View All Tags

Build, Innovate, and Scale Your Apps - Nife Will Take Care of the Rest!

Are you in search of a Hybrid Cloud Platform, which can help you build, deploy, and scale apps seamlessly, within less time span? Nife offers it all! Read on.

The cloud profoundly alters how we develop and operate apps. The rate at which DevOps make updates to their goods and services has been dramatically influenced by digital transformation. With over 500 million new apps projected to be produced in the next years, DevOps must strike a balance between managing the latest technology and developing new features.

Developers are crucial to today's environment, and the job you perform is critical to fuelling enterprises in every industry. Each developer and development team brings new ideas and creativity to the table. Our goal with Nife's Hybrid Cloud Platform is to serve as the foundation for all of this innovation, empowering the whole community as they construct what comes next. Using Nife's Hybrid Cloud Platform design patterns will help you achieve the agility, efficiency, and speed of innovation that your organization requires.

Nife Hybrid Cloud Platform

Nife's Modern Architecture opens up new options

Organizations throughout the world are focusing their main business goals on innovation, customer happiness, and operational efficiency. To achieve these objectives, businesses must rely on their applications to pave the way.

The following list could be useful for DevOps in Modern architecture using Nife's Hybrid Cloud Platform

Modern apps should be accelerated#

With Nife, you can help your firm innovate, cut expenses, speed time to market, and increase dependability.

Create new applications from scratch.#

Nife's application development is a powerful method for designing, producing, and managing cloud software that improves the agility of your development teams as well as the stability and security of your applications, allowing you to build and distribute better products more quickly. Get professional advice and understand fundamental principles to help you progress faster now.

Adopt a cutting-edge DevOps model.#

You may transfer resources from business as usual to distinguishing activities with deep customer value by using NIFE services, methods, and strategies that allow innovation and agility. Learn how NIFE can help you bring your builders, developers, and operations closer together so you can create, deploy, and innovate at scale.

Mitigate to update your applications.#

Many firms are upgrading to maximize corporate value. Discover NIFE's best practices and discover how to relocate and upgrade your business-critical apps now for increased availability, quick deployment, reduce DevOps investment and improved productivity.

Hybrid Cloud Platform: Nife's cloud-native designs enable large-scale innovation.#

At NIFE, cloud-native is at the heart of application innovation and Modern architecture. When we talk about cloud-native, we mean, reducing DevOps investment, the latest technology, and development processes that enable enterprises to design and deploy scaled apps easily. The speed and agility of cloud-native in NIFE are enabled by certain core pillars such as NIFE's PAAS Platform, entire web apps, APIs, and event-driven serverless functions that are proximate to the end-user without requiring them to worry about the underlying infrastructure.

The following are the characteristics of Nife's Hybrid Cloud Development and quick deployment:

Comprehensive automation Scale and adaptability Consistent knowledge Security with speed "Code to cloud" simplified Cost reduction

How Does Nife's Hybrid Cloud Platform Work?#

Nife's Hybrid Cloud Platform offers access to on-demand robust infrastructure from a global array of providers to seamlessly deploy any application anywhere. Nife includes rapid, quick deployment, reduce DevOps investment as well as an integrated versioning mechanism for managing applications. To allow your apps to migrate across robust infrastructure globally, you may deploy normal Docker containers or plug your code straight from your git repositories.

Deploy in Seconds#

Deploy your app from Docker images, or connect your GIT repository and simply deploy

Run globally in a Single Click#

Run your apps in some or all of the growing fast expanding regions or connect your robust infrastructure. Go global with 500 Cloud, Edge, and Telco locations.

Auto Scaling Seamlessly#

Any growing fast expanding region, any location at the closest endpoint at fingertips.

Nife Hybrid Cloud Platform

Nife's Hybrid Cloud Platform's strength and scalability#

The services provided by Nife's Hybrid Cloud Platform, as well as the underlying cloud architecture that lets you focus on creating and releasing code, distinguish it as a development platform and ecosystem. You may build on and exploit a full cloud-native platform, including containers, PaaS Platform APIs, event-driven serverless functions, and a developer-friendly serverless platform.

Conclusion on the Advantages of a Hybrid Cloud Platform#

Nife is a serverless platform for developers that allows enterprises to efficiently manage, launch, and scale applications internationally. It runs your apps near your users and grows to compute in cities where your program is most often used. Nife PaaS Platform enables you to deploy various types of services near the end-user, such as entire web apps, APIs, and event-driven serverless operations, without worrying about the underlying robust infrastructure. Applications may be deployed in growing fast expanding regions spanning North America, Latin America, Europe, and the Asia Pacific. The Nife edge network includes an intelligent load balancer and geo-routing based on rules.

Amazing DevOps hacks to try right now | Nife

Amazing DevOps hacks to try right now!#

The tools, techniques, and culture connected with DevOps have significantly grown over the years, allowing this unique niche of professionals to be directed and supported by the correct attitude and technology.

Here are some DevOps hacks that might assist you in ensuring a good start.

DevOps hacks

#1 YAML may make frontend development easier.#

YAML (Yet Another Markup Language) has become the de facto language for declarative-based automation. We widely use it in DevOps and development work for various frontend setups, automation, and more.

Learning YAML (or improving your YAML abilities) makes it simpler to store configurations for your apps, such as settings, in a simple-to-write and read language. As a result, you're likely to encounter YAML files in places ranging from business development workflows to open-source projects, and yes, you'll find plenty of YAML files on GitHub.

Whether you can use YAML directly for your day-to-day Dev processes or use various YAML tools, there are some significant advantages to getting started with this language—or honing your YAML abilities.

#2 Several DevOps tools to keep you going quickly#

DevOps tools are a technology that makes it simpler to build, test, host, and deploy software while also alleviating concerns about unexpected failures.

Here are three "DevOps tools" that can help you speed up your workflows and focus on creating outstanding products.

1. Git#

Git is a developer favorite and a popular DevOps tool. Git simplifies version management and provides a simple approach for teams to interact, experiment with multiple branches, and merge new features into the main software branch.

2. Cloud-hosted integrated development environments (IDE)#

Cloud IDEs have hosted developer environments that allow you to write, execute, and debug code and twirl up new, pre-configured settings. Cloud IDEs make it extremely simple to create new, pre-configured development environments. You also don't have to worry about how powerful the machine you're writing on is because they're housed in the cloud.

3. Containers#

If you don't want to utilize a cloud IDE, you may use dev containers locally or in the cloud. Containers have grown in prominence over the last decade due to their utility in microservices designs, continuous integration and delivery, and cloud-native application development, among other things. Containers are lightweight and practical by design, making it simple to create, test, stage, and deploy any software.

#3 Automated testing and continuous integration (CI)#

Most teams include basic unit testing in their CI process, but do not include testing for security vulnerabilities, automated UI testing, integration testing, etc.

These are two things that can help you improve your workflows: (A) ensuring that your code is compatible with the main branch; (B) detecting security vulnerabilities and other issues so that your DevOps team's burden is reduced.

1. Running automated tests with GitHub Actions#

When automating tests using GitHub Actions, you have two options: create your action or use pre-built actions from the GitHub Marketplace.

2. Creating CI pipelines with GitHub Actions#

We know the technique of automatically merging code from various persons for a specific project as continuous integration (CI). A solid CI technique allows you to work quicker, ensure that your code compiles correctly, integrate code changes more effectively, and ensure that your code works well with everyone else's.

azure devops

#4 Server orchestration ideas for speed and flexibility.#

You're working with many environments while developing a cloud-native application. When you can ensure that your application and infrastructure work effectively together, you can rely less on an operations staff scrambling to get your software to operate on the current infrastructure at the last minute.

This is where server orchestration comes into play. Server orchestration, also known as infrastructure orchestration, is frequently the responsibility of IT and DevOps teams, and it entails configuring, maintaining, provisioning, and coordinating the systems and applications. Improved scalability is a significant benefit of infrastructure automation, and defined environments make it easier to pull down and recreate an environment when anything goes wrong.

DevOps teams

#5 Repetitive tasks? Script them using Bash or PowerShell.#

Bash has strong roots in the Unix realm, but PowerShell has supplanted the command shell and older scripting languages in Windows systems for job automation and configuration management. Bash and PowerShell operate in distinct ways. Whereas PowerShell works with objects, Bash communicates as text. Even yet, what you pick is mostly a matter of personal choice.

Conclusion#

There is a significant distinction between an IT professional, a DevOps engineer, and a developer. Any developer who learns a few DevOps tactics will find it simpler to work independently and focus on what matters most: developing incredible software. That is something we can all seem to agree on.

Are you looking for an extended DevOps team to support your business?

Get in touch with us!

Adapt to the latest technologies to deliver a world-class customer experience

Modern tech in customer support, assistance, and business is generating a lot of buzz. The majority of new technology will only assist customer-facing workers to accomplish their tasks more efficiently. Cloud computing technology, cloud-native application development, Edge Computing for Enterprises, multimedia, real-time messaging, chatbots, and artificial intelligence (AI), cryptocurrency, and even self-service, itself all have the potential to deliver a world-class customer experience.

Cloud computing technology

How Cloud computing technology is Transforming Customer Experience?

Retail, healthcare, finance, and manufacturing are all industries that generate massive volumes of data daily. To truly exploit this data, you must first store and analyse it, something traditional data solutions are incapable of doing owing to their fragmented nature.

Cloud computing technologies are a means to many goals that each organisation must identify as part of a unified cloud strategy. There are several ways that Cloud computing technology may have a real-world influence across industries for companies aiming to change the customer experience. The banking, insurance, and healthcare industries all generate massive amounts of data, have regulatory compliance requirements, and have high client demand for services and goods [(Deb, Jain and Deb, 2018)]. They require strategies to provide, track, expand, and enhance such services while also meeting consumers' financial and healthcare demands.

Cloud computing technology is critical to reaching this aim since it provides:

Analytics and data processing#

Compliance with regulatory data protection requirements#

Detection of Fraud#

Elimination of mainframe technological debt through cloud-native app integration#

Loan processing and underwriting examination#

New banking and financial planning goods and services#

Inventory control#

What Edge Computing for Enterprises means for the Customer Experience?

Processing data at the source rather than a centralized or cloud-based server may appear to be a technical problem, but Edge computing for enterprises only benefits marketers. Marketers can participate in the following activities with data processing occurring closer to the source:

Real-time marketing:#

Because data is analyzed at the source, marketers may create automated systems that respond promptly to customer inputs by using Edge computing for enterprises

Offline experiences:#

Edge computing for enterprises isn't entirely dependent on a connection between an IoT device and a centralized server, actions can be carried out even when no internet connection is available [(Noghabi et al., 2020)].

Personalization and interactive experiences:#

Edge computing for enterprises will be able to react quickly to consumer involvement, resulting in a hyper-personalized experience defined and controlled by the end user.

Edge computing for enterprises

Cloud-native Software Development for customer experience

To survive the upheaval, businesses need to have access to highly qualified workers, a strong infrastructure, and the flexibility to create high-quality apps. Organizations must embrace new technologies such as DevOps, Agile, microservices, containers, Agile, and platform-as-a-service to implement contemporary techniques such as provisioning, automated testing, and cloud-native application development to thrive in today's digital edge [(Kosińska and Zieliński, 2020)].

Today's businesses rely heavily on software to differentiate their service and product offerings. Businesses are shifting to design such apps for the best performance in the cloud to take advantage of the flexibility and speed of the cloud. As a result, an early user of cloud-native apps has enjoyed exceptional business velocity and growth. Cloud-native Software Development enables companies to fully realize the promise of cloud-native capabilities to achieve maximum speed, agility, and DevOps efficiency and fully embrace the true benefits of Cloud-native Software Development.

How can the latest technologies assist businesses in improving the customer experience?

Understanding customer behaviour is critical for any corporation seeking to become a market leader in today's volatile business environment. Customer experience management may be time-consuming and costly, and it generally necessitates uniformity across channels, such as closed-loop procedures, customer service centre encounters, SMS, website engagement, and so on [(Gellweiler, and Krishnamurthi, 2020)].

Edge computing

Companies are focused on automation and uncovering an organization's latent potential with the assistance of Cloud computing technology, Cloud-native Software Development, and Edge computing for enterprises in the following ways to further simplify these operations and have a direct influence on customers:

Effective business strategy optimization#

In today's fast-paced business world, tapping into uncharted territory might be one of the things that firms can use to ensure long-term success.

Data gathering and review generation#

Businesses must be agile and responsive in their procedures to adapt to today's fast-paced business climate.

Recommendations customized to you.#

With the use of AI and sophisticated data analytics in the business domain, predictive analytics tools may assist businesses in producing informed forecasts by providing wiser ideas and intelligent recommendations for future data-driven strategy creation [(Rekettye and Rekettye, 2019)].

Technology that brings customers closer together.#

AI is the market's next big thing and for all the right reasons. Or perhaps technology has already become an important part of our life without our recognizing it. With a fantastic customer-centric strategy, any firm hopes to generate revenue at the end of the day.

Five Essential Characteristics of Hybrid Cloud Computing

A hybrid cloud environment combines on-premises infrastructure, private cloud services, and a public cloud, with orchestration across multiple platforms. If you use a mixture of public clouds, on-premises computing, and private clouds in your data center, you have a hybrid cloud infrastructure.

We recognize the significance of hybrid cloud in cloud computing and its role in organizational development. In this blog article, we'll explore the top five characteristics that define powerful and practical hybrid cloud computing.

Hybrid Cloud Computing

What is Hybrid Cloud Computing?#

A hybrid cloud computing approach combines a private cloud (or on-premises data center) with one or more public cloud products connected by public or private networks [(Tariq, 2018)]. Consistent operations enable the public cloud to serve as an extension of a private or on-premises system, with equivalent management processes and tools. Because nearly no one nowadays relies solely on the public cloud, hybrid cloud computing options are becoming increasingly popular. Companies have invested millions of dollars and thousands of hours in on-premises infrastructure. Combining a public and private cloud environment, such as an on-premises data center and a public cloud computing environment, is a common example of hybrid cloud computing provided by AWS, Microsoft Azure, and Google Cloud.

Hybrid Cloud Providers#

The digital revolution has radically changed the IT sector with the introduction of cloud computing. There are several hybrid cloud providers on the market, including:

  1. Amazon Web Services (AWS)
  2. Microsoft Azure
  3. Google Cloud
  4. VMware
  5. VMware Cloud on AWS, VMware Cloud on Dell EMC, HCI powered by VMware vSAN, and VMware vRealize cloud management
  6. Rackspace
  7. Red Hat OpenShift
  8. Hewlett Packard Enterprise
  9. Cisco HyperFlex solutions
  10. Nife Cloud Computing
Hybrid Cloud Providers

Characteristics of Hybrid Cloud Computing#

Characteristic #1: Speed#

The capacity to automatically adjust to changes in demand is critical for innovation and competitiveness. The market expects updates immediately, and rivals are optimizing rapidly. Hybrid computing must be quick and portable, with maximum flexibility. Technologies like Docker and hybrid cloud providers such as IBM Bluemix facilitate this agility in a virtualized environment.

Characteristic #2: Cost Reduction#

One advantage of cloud computing is lowering expenses. Previously, purchasing IT assets meant paying for unused capacity, impacting the bottom line. Hybrid computing reduces IT costs while allowing enterprises to pay only for what they use. This optimization frees up funds for innovation and market introduction, potentially saving enterprises up to 30%.

Characteristic #3: Intelligent Capabilities and Automation#

Creating a digital experience in hybrid cloud computing requires integrating various technologies, which can be challenging for DevOps teams traditionally relying on numerous tools [(Aktas, 2018)]. Leveraging intelligent, unified, and centralized management capabilities enhances productivity and flexibility. IT automation in hybrid computing reduces human error, enforces policies, supports predictive maintenance, and fosters self-service habits.

Characteristic #4: Security#

Hybrid computing provides critical control over data and enhanced security by reducing data exposure. Organizations can decide where to store data based on compliance, regulatory, or security concerns. Hybrid architectures also support centralized security features like encryption, automation, access control, orchestration, and endpoint security, which are crucial for disaster recovery and data insurance [(Gordon, 2016)].

Characteristic #5: Lightweight Applications#

The final characteristic pertains to application size. DevOps teams need to develop agile apps that load quickly, boost efficiency, and occupy minimal space. Despite inexpensive storage, the focus should be on managing and understanding client data. Hybrid cloud computing supports DevOps in creating applications for global markets while meeting technological demands.

Hybrid Cloud Computing

References#

Aktas, M.S. (2018). Hybrid cloud computing monitoring software architecture. Concurrency and Computation: Practice and Experience, 30(21), p.e4694. doi:10.1002/cpe.4694.

Diaby, T. and Rad, B.B. (2017). Cloud computing: a review of the concepts and deployment models. International Journal of Information Technology and Computer Science, 9(6), pp.50-58.

Gordon, A. (2016). The Hybrid Cloud Security Professional. IEEE Cloud Computing, 3(1), pp.82–86. doi:10.1109/mcc.2016.21.

Lee, I. (2019). An optimization approach to capacity evaluation and investment decision of hybrid cloud: a corporate customer's perspective. Journal of Cloud Computing, 8(1). doi:10.1186/s13677-019-0140-0.

Tariq, M.I. (2018). Analysis of the effectiveness of cloud control matrix for hybrid cloud computing. International Journal of Future Generation Communication and Networking, 11(4), pp.1-10.

Read more on Hybrid Cloud Computing: All You Need to Know About Hybrid Cloud Deployment

What is 5G Telco Edge? Telco Edge Computing

5G and edge computing are creating plenty of new income opportunities in industries like manufacturing, transportation, and gaming. How can communication service providers acquire a competitive advantage? Everything you need to know is provided here.

elco-Edge-Computing

What is Telco Edge?#

Telecommunications companies frequently associate edge computing with mobile edge computing or multi-access edge computing - computing at the network's edge. Telco edge computing, on the other hand, comprises workloads operating on client-premises equipment and other points of presence at the customer site. The term "telco edge" refers to distributed computation maintained by the operator that may extend beyond the network edge and onto the customer edge. Telco Edge combines the advantages of both local and cloud computing. Telco edge computing should be adaptable and scalable. Telco edge computing can handle unexpected surges in workloads caused by increased end-user activity or answer organizations' need to grow fast while building, testing, and deploying new applications [(Klas, 2017)].

elco-Edge-Computing

What exactly is Telco Edge Cloud (TEC)?#

The Telco Edge Cloud is a worldwide platform solution for exposing, managing, and marketing Edge Computing, Network resources, and capabilities across multiple operators and national borders, utilising existing and future network assets. Telco Edge Cloud is building a platform built on open technologies and telecom standards. MNOs may monetize their edge resources thanks to Telco Edge Cloud.

The Telco Edge Cloud idea and architecture are beneficial not only to MNOs but may also be utilised by other service and edge providers to improve their services since capabilities like NaaS are made available to these third parties [(Baliosian et al., 2021)]. Other edge and cloud providers can give methods to their application development communities to optimise edge application performance and experience by consuming Telco Edge Cloud NaaS capabilities and implementing them into their platform offerings.

Telco Edge Computing#

Telco Edge computing is also known as Mobile Edge Computing (MEC) or Multi-Access Edge Computing (MAEC). Telco Edge computing provides execution resources for applications that need networking close to end users, often within or near the operator network's boundary [(Gebhardt et al., 2012)].

Telco Edge computing may also be installed on corporate premises. Communication service providers or service providers can manage or host the edge infrastructure. Several use cases necessitate the deployment of distinct apps at multiple locations. In such cases, a distributed cloud may be viewed as an execution environment for applications spread over numerous sites, with connections maintained as a single solution. The key advantages of Telco Edge computing are low latency, high bandwidth, device processing, and data offload, and trusted computing and storage.

What is a 5G Telco Cloud?#

A 5G Telco Cloud is a software-based cloud architecture that allows for the placement of 5G network functions/applications and the division of a single infrastructure into various network slices for the delivery of a wide variety of services ranging from eMBB to URLLC [(Gebremariam et al., 2021)]. It enables you to swiftly add services, respond fast, and manage resources efficiently and automatically.

Network function virtualization, software-defined networks (SDN), edge computing, and microservices are components of 5G Telco Cloud.

  1. Network Functions Virtualization of 5G Telco Cloud enables you to abstract operations from hardware. This enables conventional servers to execute operations that would otherwise necessitate the utilization of hardware.
  1. Software-Defined networking (SDN), a new backhaul/mid-haul design of 5G Telco Cloud, is adaptive, manageable, and versatile. It is perfect for the fluidity of 5G applications. This design isolates network control from forwarding services, allowing network control to be programmed directly.
  1. Microservices are a method of separating applications and network operations into loosely linked systems. DevOps cycles or CI/CD can be used to manage them.

5g and Edge computing#

5G and edge computing are intricately related technologies: both are set to greatly increase application performance and enable massive volumes of data to be handled in real-time. 5G speeds can be up to 10 times faster than 4G, while mobile edge computing minimises latency by putting computational capabilities closer to the end user.

5G and edge computing are technologies that can work together to power a new generation of smart devices and apps. 5G's enhanced performance can improve edge computing applications by lowering latency, improving application response times, and enhancing organizations' capacity to gather and analyze data.

Benefits of the Relationship between 5G and Edge Computing#

Ultra-low latency use cases: The combination of 5G with edge computing is important for achieving ultra-low latency in a variety of edge devices and use cases.

Near real-time performance: Using 5G and edge computing together allows organizations to collect and process large amounts of real-time data to optimize various operational processes and increase productivity and customer experiences.

Improved bandwidth usage: The connection between 5G and edge computing influences the success of 5G network technologies.

5G-and-Edge-Computing

Simplify Your Deployment Process | Cheap Cloud Alternative

As a developer, you're likely familiar with new technologies that promise to enhance software production speed and app robustness once deployed. Cloud computing technology is a prime example, offering immense promise. This article delves into multi-access edge computing and deployment in cloud computing, providing practical advice to help you with real-world application deployments on cloud infrastructure.

cloud-deployment-768x413.jpg

Why is Cloud Simplification Critical?#

Complex cloud infrastructure often results in higher costs. Working closely with cloud computing consulting firms to simplify your architecture can help reduce these expenses [(Asmus, Fattah, and Pavlovski, 2016)]. The complexity of cloud deployment increases with the number of platforms and service providers available.

The Role of Multi-access Edge Computing in Application Deployment#

[Multi-access Edge Computing] offers cloud computing capabilities and IT services at the network's edge, benefiting application developers and content providers with ultra-low latency, high bandwidth, and real-time access to radio network information. This creates a new ecosystem, allowing operators to expose their Radio Access Network (RAN) edge to third parties, thus offering new apps and services to mobile users, corporations, and various sectors in a flexible manner [(Cruz, Achir, and Viana, 2022)].

Choose Between IaaS, PaaS, or SaaS#

In cloud computing, the common deployment options are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). PaaS is often the best choice for developers as it manages infrastructure, allowing you to focus on application code.

Scale Your Application#

PaaS typically supports scalability for most languages and runtimes. Developers should understand different scaling methods: vertical, horizontal, manual, and automatic [(Eivy and Weinman, 2017)]. Opt for a platform that supports both manual and automated horizontal scaling.

Consider the Application's State#

Cloud providers offering PaaS often prefer greenfield development, which involves new projects without constraints from previous work. Porting existing or legacy deployments can be challenging due to ephemeral file systems. For greenfield applications, create stateless apps. For legacy applications, choose a PaaS provider that supports both stateful and stateless applications.

PaaS provider Nife

Select a Database for Cloud-Based Apps#

If your application doesn't need to connect to an existing corporate database, your options are extensive. Place your database in the same geographic location as your application code but on separate containers or servers to facilitate independent scaling of the database [(Noghabi, Kolb, Bodik, and Cuervo, 2018)].

Consider Various Geographies#

Choose a cloud provider that enables you to build and scale your application infrastructure across multiple global locations, ensuring a responsive experience for your users.

Use REST-Based Web Services#

Deploying your application code in the cloud offers the flexibility to scale web and database tiers independently. This separation allows for exploring technologies you may not have considered before.

Implement Continuous Delivery and Integration#

Select a cloud provider that offers integrated continuous integration and continuous delivery (CI/CD) capabilities. The provider should support building systems or interacting with existing non-cloud systems [(Garg and Garg, 2019)].

Prevent Vendor Lock-In#

Avoid cloud providers that offer proprietary APIs that can lead to vendor lock-in, as they might limit your flexibility and increase dependency on a single provider.

best Cloud Company in Singapore

References

Asmus, S., Fattah, A., & Pavlovski, C. ([2016]). Enterprise Cloud Deployment: Integration Patterns and Assessment Model. IEEE Cloud Computing, 3(1), pp.32-41. doi:10.1109/mcc.2016.11.

Cruz, P., Achir, N., & Viana, A.C. ([2022]). On the Edge of the Deployment: A Survey on Multi-Access Edge Computing. _ACM Computing Surveys (CSUR).

Eivy, A., & Weinman, J. ([2017]). Be Wary of the Economics of ‘Serverless' Cloud Computing. IEEE Cloud Computing, 4(2), pp.6-12. doi:10.1109/mcc.2017.32.

Garg, S., & Garg, S. ([2019]). Automated Cloud Infrastructure, Continuous Integration, and Continuous Delivery Using Docker with Robust Container Security. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 467-470). IEEE.

Noghabi, S.A., Kolb, J., Bodik, P., & Cuervo, E. ([2018]). Steel: Simplified Development and Deployment of Edge-Cloud Applications. In 10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18).

Cloud Deployment Models and Cloud Computing Platforms

Organizations continue to build new apps on the cloud or move current applications to the cloud. A company that adopts cloud technologies and/or selects cloud service providers (CSPs) and services or applications without first thoroughly understanding the hazards associated exposes itself to a slew of commercial, economic, technological, regulatory, and compliance hazards. In this blog, we will learn about the hazards of application deployment, Cloud Deployment, Deployment in Cloud Computing, and Cloud deployment models in cloud computing.

Cloud Deployment Models

What is Cloud Deployment?#

Cloud computing is a network access model that enables ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or interaction from service providers [(Moravcik, Segec and Kontsek, 2018)].

Essential Characteristics:#

  1. On-demand self-service
  2. Broad network access
  3. Resource pooling
  4. Rapid elasticity
  5. Measured service

Service Models:#

  1. Software as a service (SaaS)
  2. Platform as a service (PaaS)
  3. Infrastructure as a service (IaaS)

Deployment Models:#

  1. Private Cloud
  2. Community cloud
  3. Public cloud
  4. Hybrid cloud

Hazards of Application Deployment on Clouds#

At a high level, cloud environments face the same hazards as traditional data centre settings; the threat landscape is the same. That is, deployment in cloud computing runs software, and software contains weaknesses that attackers aim to exploit.

cloud data security

1. Consumers now have less visibility and control.

When businesses move assets/operations to the cloud, they lose visibility and control over those assets/operations. When leveraging external cloud services, the CSP assumes responsibility for some rules and infrastructure in Cloud Deployment.

2. On-Demand Self-Service Makes Unauthorized Use Easier.

CSPs make it very simple to add Cloud deployment models in cloud computing. The cloud's on-demand self-service provisioning features enable an organization's people to deploy extra services from the agency's CSP without requiring IT approval. Shadow IT is the practice of employing software in an organisation that is not supported by the organization's IT department.

3. Management APIs that are accessible through the internet may be compromised.

Customers employ application programming interfaces (APIs) exposed by CSPs to control and interact with cloud services (also known as the management plane). These APIs are used by businesses to provide, manage, choreograph, and monitor their assets and people. CSP APIs, unlike management APIs for on-premises computing, are available through the Internet, making them more vulnerable to manipulation.

4. The separation of several tenants fails.

Exploiting system and software vulnerabilities in a CSP's infrastructure, platforms, or applications that allow multi-tenancy might fail to keep tenants separate. An attacker can use this failure to obtain access from one organization's resource to another user's or organization's assets or data.

5. Incomplete data deletion

Data deletion threats emerge because consumers have little insight into where their data is physically housed in the cloud and a limited capacity to verify the secure erasure of their data. This risk is significant since the data is dispersed across several storage devices inside the CSP's infrastructure in a multi-tenancy scenario.

6. Credentials have been stolen.

If an attacker acquires access to a user's cloud credentials, the attacker can utilise the CSP's services such as deployment in cloud computing to provide new resources (if the credentials allow provisioning) and target the organization's assets. An attacker who obtains a CSP administrator's cloud credentials may be able to use them to gain access to the agency's systems and data.

7. Moving to another CSP is complicated by vendor lock-in.

When a company contemplates shifting its deployment in cloud computing from one CSP to another, vendor lock-in becomes a concern. Because of variables such as non-standard data formats, non-standard APIs, and dependency on one CSP's proprietary tools and unique APIs, the company realises that the cost/effort/schedule time required for the transition is substantially more than previously estimated.

8. Increased complexity puts a strain on IT staff.

The transition to the cloud can complicate IT operations. To manage, integrate, and operate in Cloud deployment models in cloud computing, the agency's existing IT employees may need to learn a new paradigm. In addition to their present duties for on-premises IT, IT employees must have the ability and skill level to manage, integrate, and sustain the transfer of assets and data to the cloud.

Cloud deployment models in cloud computing

Conclusion

It is critical to note that CSPs employ a shared responsibility security approach. Some features of security are accepted by the CSP. Other security concerns are shared by the CSP and the consumer. Finally, certain aspects of security remain solely the consumer's responsibility. Effective Cloud deployment models in cloud computing and cloud security are dependent on understanding and fulfilling all customs duties. The inability of consumers to understand or satisfy their duties is a major source of security issues in Cloud Deployment.

Content Delivery Networking | Best Cloud Computing Companies

Significant changes in the digital world over the last several decades have prompted businesses to seek new methods to offer information. As a result, Content Delivery Networks, or CDNs, have grown in popularity. Content Delivery Networking global servers that enable consumers to get material with minimal delay [(Goyal, Joshi and Ram, 2021)]. CDN Network is being used by an increasing number of enterprises to allow their big worldwide audience to access their services.

Content Delivery Networking

Benefits of Content Delivery Networking (CDN)#

1. Reduce Server Load#

Remember that a Content Delivery Networks are a globally spread network of servers used to deliver content. Because of the intentional placement of servers over huge distances, no server is at risk of being overwhelmed. This frees up total capacity, allowing for more concurrent users while lowering bandwidth and delivery costs [(Benkacem et al., 2018)].

2. Improve Website Performance and Speed#

A company may utilise CDNs to swiftly distribute high-performance website material by caching it on CDN servers nearest to end users. This content can include HTML code, picture files, dynamic content, and JavaScript. As a result, when website visitor requests a page or content, they do not have to wait for the request to be routed to the origin server.

3. Allow for Audience Segmentation Using User Analytics#

One advantage of Content Delivery Networks that is sometimes ignored is their capacity to deliver useful audience insights. User analytics such as real-time load data, capacity per customer, most active locations, and the popularity of various content assets provide a wealth of information that may be utilized to identify trends and content consumption habits. Businesses may utilize this information to assist their developers in further optimizing the website, improving the user experience, and contributing to increased sales and conversions.

4. Lower Network Latency and Packet Loss#

If these packets must travel over vast distances and through several devices before reaching the end user, some may be lost along the way. They might also be delayed, increase latency, or arrive at the end user in a different sequence than planned, causing a jitter [(Wichtlhuber, Reinecke and Hausheer, 2015)]. All of this results in a less-than-ideal end-user experience, especially when the material sent includes high-definition video, audio, or live streaming.

Content Delivery Network in Edge computing

5. Turn on Advanced Website Security#

Improved website security is an indirect advantage of Content Delivery Networks services. This is notably useful in DDoS assaults, in which attackers attempt to overload a critical DNS server by delivering a massive amount of queries. The objective is to knock down this server and, with it, the website. Content Delivery Networking can mitigate such DDoS assaults by functioning as a DDoS protection and mitigation platform, distributing the load evenly throughout the network's whole capacity, and safeguarding data centers [(Li and Meng, 2021)].

6. Increase the Accessibility of Content#

CDN Network may absorb all of this traffic and disperse it throughout its distributed infrastructure, allowing a company to improve its content available regardless of demand. If one server fails, additional points of presence (PoPs) can pick up the traffic and keep the service running.

7. Cost Savings from Bandwidth Reduction#

CDNs are indirectly responsible for saving money and reducing unnecessary expenses and losses related to server failures and hacked websites due to their capacity to defeat one of the most popular forms of cyber assaults in the form of DDoS protection. In general, using the best CDN provider will save organizations money on the costs of putting up infrastructure, hosting, and servers all over the world.

8. Effectively Expand Audience Reach and Scale#

Content Delivery Networking makes it easier and more cost-effective to send information to consumers in locations remote from a company's headquarters and primary servers using CDN Cloud. They also help to ensure that clients have a consistent user experience. Keeping clients delighted in this manner will have a snowball effect and drive audience expansion, helping organizations to efficiently extend into new areas.

9. A CDN Allows for Global Reach#

Over one-third of the world's population is online, implying that worldwide internet use has expanded dramatically in the previous 15 years. CDN Cloud acceleration with local POPs is provided through CDNs. Because of its worldwide reach, any latency issues that disrupt long-distance online transactions and create poor load times would be eliminated.

Edge Computing and CDN

10. Customer Service is Available 24/7#

Quality Content Delivery Networking has a reputation for providing excellent customer service among the best CDN [(Herbaut et al., 2016)]. In other words, there is always a CS team available to you. Whenever something goes wrong, you have a backup ready to assist you in resolving your performance issues. Having a support team on speed dial is a wise business move because you're not just paying for a cloud service, but for a wide range of services that will help your company flourish on a worldwide scale.

Save Cloud Budget with NIFE | Edge Computing Platform

Cloud cost optimization is the process of finding underutilized resources, minimizing waste, obtaining more discounted capacity, and scaling the best cloud computing services to match the real necessary capacity—all to lower infrastructure as a service price [(Osypanka and Nawrocki, 2020)].

cloud gaming services

Nife is a Singapore-based Unified Public Cloud Edge best cloud computing platform for securely managing, deploying, and scaling any application globally using Auto Deployment from Git. It requires no DevOps, servers, or infrastructure management. There are currently many best cloud computing companies in Singapore and NIFE is one of the best cloud computing companies in Singapore.

What makes Nife the best Cloud Company in Singapore?#

Public cloud services are well-known for their pay-per-use pricing methods, which charge only for the resources that are used. However, in most circumstances, public cloud services charge cloud clients based on the resources allocated, even if those resources are never used. Monitoring and controlling cloud services is a critical component of cloud cost efficiency. This can be challenging since purchasing choices are often spread throughout a company, and people can install cloud services and commit to charges with little or no accountability [(Yahia et al., 2021)]. To plan, budget, and control expenses, a cloud cost management approach is required. Nife utilizes cloud optimization to its full extent thus making it one of the best cloud companies in Singapore.

What Factors Influence Your Cloud Costs?#

Several factors influence cloud expenses, and not all of them are visible at first.

Public cloud services typically provide four price models:

1. **Pay as you go:** Paying for resources utilized on an hourly, minutely, or secondary basis.

2. **Reserved instances:** Paying for a resource in advance, often for one or three years.

3. **Spot instances:** Buying the cloud provider's excess capacity at steep prices, but with no assurance of dependability [(Domanal and Reddy, 2018)].

4. **Plans for savings:** Some cloud providers provide volume discounts based on the overall amount of cloud services ordered by an enterprise.

cloud gaming services

What cost factors make Nife the best cloud computing platform?#

The cost factors which make Nife the best cloud computing platform are:

  • Utilization of computes instances — with prices variable depending on the instance type and pricing strategy.
  • Utilization of cloud storage services — with varying costs depending on the service, storage tier, storage space consumed, and data activities done.
  • Database services are commonly used to run managed databases on the cloud, with costs for compute instances, storage, and the service itself [(Changchit and Chuchuen, 2016)].
  • Most cloud providers charge for inbound and outgoing network traffic.
  • Software licensing – even if the cost of a managed service is included in the per-hour price, the software still has a cost in the cloud.
  • Support and consultancy – In addition to paying for support, the best cloud computing platforms may require extra professional services to implement and manage their cloud systems.
best cloud computing platform

What are Nife's Cost Saving Strategies that make it the best cloud computing services provider?#

Here is the list of cost factors making NIFE the best cloud computing services provider:

Workload schedules

Schedules can be set to start and stop based on the needs of the task. There is no point to activate and pay for a resource if no one is utilising it.

Make use of Reserved Instances.

Businesses considering long-term cloud computing investments might consider reserved instances. Cloud companies such as NIFE offer savings of up to 75% for pledging to utilise cloud resources in advance.

Utilize Spot Instances

Spot instances have the potential to save much more than allocated instances. Spot instances are a spare capacity that is sold at a discount by the cloud provider [(Okita et al., 2018)]. They are back on the market and can be acquired at a discount of up to 90%.

Utilize Automation

Use cloud automation to deploy, set up, and administer Nife's best cloud computing services wherever possible. Automation operations like backup and storage, confidentiality and availability, software deployment, and configuration reduce the need for manual intervention. This lowers human mistakes and frees up IT employees to focus on more critical business operations.

Automation has two effects on cloud costs:

1. You obtain central control by automating activity. You may pick which resources to deploy and when at the department or enterprise level.

2. Automation also allows you to adjust capacity to meet current demand. Cloud providers give extensive features for sensing application load and usage and automatically scaling resources based on this data.

Keep track of storage use.

The basic cost of cloud storage services is determined by the storage volumes provisioned or consumed. Users often close projects or programs without removing the data storage. This not only wastes money but also raises worries about security. If data is rarely accessed but must be kept for compliance or analytics, it might be moved to archive storage.

Real-time Application Monitoring

The supply of continually updated information streaming at zero or low latency is referred to as real-time (data) monitoring [(Fatemi Moghaddam et al., 2015)]. IT monitoring entails routinely gathering data from all areas of an organization's IT system, such as on hardware, virtualized environments, networking, and security settings, as well as the application stack, including cloud-based applications, and software user interfaces in cloud computing companies. IT employees use this data to assess system performance, identify abnormalities, and fix issues. Real-time application monitoring raises the stakes by delivering a continuous low-latency stream of relevant and current data from which administrators may quickly spot major issues. Alerts can be delivered more rapidly to suitable personnel – or even to automated systems – for remediation. Cloud computing companies can disclose and forecast trends and performance by recording real-time monitoring data over time.

Real-time Application Monitoring

Nife Cloud Computing & Cloud-Native Development#

Nife is a serverless platform for developers that allows enterprises to efficiently manage, launch, and scale applications internationally. It runs your apps near your users and grows to compute in cities where your programme is most often used. Traditionally, programmes are placed on the cloud computing companies which are located far away from the end-user. When data moves between regions and places, it creates computational issues such as bandwidth, cost, and performance, to mention a few.

Nife architecture#

Cloud is constructed in the style of a Lego set. To build a multi-region architecture for your applications across constrained cloud regions, you must first understand each component: network, infrastructure, capacity, and computing resources [(Odun-Ayo et al., 2018)]. Manage and monitor the infrastructure as well. This still does not affect application performance.

Nife PaaS Platform enables you to deploy various types of services near the end-user, such as entire web apps, APIs, and event-driven serverless operations, without worrying about the underlying infrastructure. Nife includes rapid, continuous deployments as well as an integrated versioning mechanism for managing applications. To allow your apps to migrate across infrastructure globally, you may deploy normal Docker containers or plug your code straight from your git repositories. Applications may be deployed in many places spanning North America, Latin America, Europe, and the Asia Pacific. The Nife edge network includes an intelligent load balancer and geo-routing based on rules.

Cloud Computing platform

Nife Instantly deploy all applications

To install any application quickly and easily everywhere, NIFE provides on-demand infrastructure from a wide range of worldwide suppliers.

  • Nife deploy your application in seconds by using Docker images or by connecting your git repository and simply deploying.
  • Run internationally with a single click - Depending on your requirements, you may run your apps in any or all of our locations. With 500 Cloud, Edge, and Telco sites, you can go worldwide.
  • Seamless auto-scaling- Any region, any position at the nearest endpoint at your fingertips [(Diaby and Bashari, 2017)].
  • Anything may be run - NIFE are ready to power Telco Orchestration demands from MEC to MANO to ORAN beyond the edge cloud using Containers, Functions, and MicroVMs!

Nife's Edge Ecosystem

It is critical to stay current with the ecosystem to have a resilient, intelligent global infrastructure [(Kaur et al., 2020)]. NIFE collaborate with various cloud computing companies' supporters to establish an edge ecosystem, whether it be software, hardware, or the network.

  • Flexible - Customers of NIFE have access to infrastructure distributions worldwide, in every corner and area, thanks to the Public Edge. NIFE can reach Billions of users and Trillions of devices using these.
  • Unified - Nife's Global Public Edge is a network of edge computing resources that support numerous environments that are globally spread and deployable locally.
  • Widely dispersed - Developers may distribute workloads to resources from public clouds, mobile networks, and other infrastructures via a single aggregated access.

How does Nife's real-time application monitoring function?#

Nife's real-time monitoring conveys an IT environment's active and continuing condition. It may be configured to focus on certain IT assets at the required granularity.

The following are examples of real-time data: CPU and memory usage; application response time; service availability; network latency; web server requests; and transaction times are all factors to consider.

Real-time application monitoring tools, in general, shows pertinent data on customised dashboards. Data packet categories and formats can be shown as numerical line graphs, bar graphs, pie charts, or percentages by admins. The data displays can be adjusted based on priorities and administrative choices.

The Nife's Real-Time Monitoring and Benefits of Cloud Computing#

Collecting real-time monitoring data allows IT administrators to analyse and respond to current occurrences in the IT environment in real time. Furthermore, cloud computing companies may store and analyse real-time data over time to uncover patterns and better notice irregularities that fall outside of the predefined system and application behaviour limits. This is referred to as trend monitoring and it's among the best benefits of cloud computing.

Reactive monitoring vs. proactive monitoring: Reactive monitoring has long been used in cloud computing companies and data centres as a troubleshooting tool [(Poniszewska-Maranda et al., 2019)]. The name of this technique reveals its distinguishing feature: It responds to triggers that indicate the occurrence of an event.

Cloud Computing Platforms | Free Cloud Server

best cloud servers

Cloud computing is exploding across a multitude of businesses, particularly with the rise of remote employment. Although it is a time-consuming procedure, the cloud may deliver significant financial benefits such as budget savings and better workplace efficiency. Many firms profit from hosting workloads on the cloud, but this cloud infrastructure services paradigm is not sustainable if your cloud expenses are out of control. Cloud computing companies must carefully consider the costs of cloud services. Cloud expenses soar for a variety of reasons, including overprovisioned resources, superfluous capacity, and a lack of insight into the environment. Cost optimization also assists businesses in striking a balance between cloud performance and expense. The best cloud computing platforms in the USA are Microsoft Azure, AWS, Google Cloud, and others.

Private Clouds vs Public Clouds#

Private clouds are hosted by the cloud computing companies that store their data in the cloud such as some of the cloud computing platforms in the USA. These clouds contain no data from other organisations, which is sometimes necessary for enterprises in highly regulated sectors to fulfill compliance norms. Because each cloud environment has only one organisation, the cost is frequently greater than with public clouds. This also implies that the organisation is in charge of upkeep.

Public clouds are hosted by cloud computing companies such as NIFE Cloud Computing, Amazon, and Google, and each can host several organisations. Although the data is separated to make it orderly and safe, multitenancy keeps pricing low. Furthermore, the seller maintains public clouds, lowering operational expenses for the organisation acquiring cloud space.

Reduces the Amount of Hardware Required

The reduction in hardware expenses is one advantage of public cloud computing. Instead of acquiring in-house equipment, hardware requirements are outsourced to a vendor (Chen, Xie and Li, 2018). New hardware may be enormous, costly, and difficult for firms that are fast expanding. Cloud computing solves these problems by making resources available fast and easily like those used by the best cloud computing platforms in the USA. Furthermore, the expense of maintaining or replacing equipment is passed on to the suppliers. In addition to purchasing prices, off-site hardware reduces internal power costs and saves space. Large data centres may consume valuable office space and generate a lot of heat.

Less demanding work and upkeep

Cloud solutions can also result in significant savings in labour and maintenance expenses. Because vendor-owned gear is housed in off-site locations, there is less requirement for in-house IT professionals. If servers or other gear require repairs or updates, this is the vendor's duty and does not cost your firm any time or money. By eliminating regular maintenance, your IT personnel will be able to focus on essential projects and development. In certain circumstances, this may even imply a reduction in workforce size. The cloud will enable organisations such as those among the best cloud computing platforms in the USA who do not have the means to hire an in-house IT team to reduce costly third-party hardware maintenance fees (Chen et al., 2017).

Increased output

Aside from direct labour savings, cloud computing may be incredibly cost-effective for businesses due to increased staff efficiency. Cloud software deployment is far faster than a traditional installation. Instead of taking weeks or months to complete a traditional cloud computing companies-wide installation, cloud software deployment may be completed in a matter of hours. Employees may now spend less time waiting and more time working (Masdari et al., 2016).

Lower initial capital outlay

Cloud solutions are often provided on a pay-as-you-go basis (Zhang et al., 2020). This format offers savings and flexibility in a variety of ways and is used by the best cloud computing platforms in the USA. First and foremost, your cloud computing company does not have to pay for software that is not being used. Unlike a one-time fee for a licence, cloud software is often charged on a per-user basis. Furthermore, pay-as-you-go software can be terminated at any moment, lowering the financial risk of any product that does not function properly.

Switch to NIFE Cloud Computing & Cloud-Native Development to save your Cloud Budget#

cloud budget

Nife Cloud Computing platform which is a Unified Public Cloud Edge Platform for securely managing, deploying, and scaling any application globally using Auto Deployment from Git. It requires no DevOps, servers, or cloud infrastructure services management. Nife collaborates with a wide range of new-generation technology businesses working on data centre infrastructure, cloud infrastructure services, and stateless microservices architectures to assist engineers and customers in making the deployment, administration, and scaling of their technology simpler. When compared to conventional cloud infrastructure services, applications on Nife can have latencies ranging from 20 to 250 milliseconds and total cost savings of up to 20%. Nife moves and deploys applications near clients' end-users, reducing application latencies.

Overall, Nife eliminates the requirement for bespoke DevOps, CloudOps, InfraOps, and cloud infrastructure services compliances - Security and Privacy. As a member of the Nife Grid, Nife has access to over 500 areas worldwide to assist clients in scaling. Nife Launchpad offers internal apps that can be launched with a single click to help startups develop functionality quicker. NIFE also has GIT integrations and is on the GIT marketplace, and our customer base includes some of the world's largest corporations, as well as numerous developers and engineers.

Transformation of Edge | Cloud Computing Companies

Introduction#

edge computing for businesses

Organizations are constantly concentrating on lowering network latency and computing delay duration, as well as the volume of data communicated or maintained in the server. Organizations recognise the need to modify their processing practices and are adopting Edge Computing to speed their Digitalization activities [(Dokuchaev, 2020)]. The job of digital transformation is primarily reliant on data processing. However, to make substantial modifications, organisations must frequently make major changes as far as how data is being collected, handled, and analysed. As organizational edge computing apps acquire traction, it is increasingly evident how much they will interact with digitalization programmes. Edge computing might be the connection that amplifies prospective corporate goals in the form of different continuous innovations, such as deep learning or the Internet of things.

Traditional cloud Vs. Edge Computing#

The traditional cloud-based model relies on a centralized database, where data is obtained on the periphery and then transported to the main data centres for analysis. Edge computing negates such a need to send raw information to the central network infrastructure. It implements a decentralized IT infrastructure in which data is processed near the edge, in which it is created and absorbed and it also empowers more instantaneous impact of analysis tools and AI functionality.

Edge Computing's Role in Digital Transformation

Edge Computing's role in Digital Business transformation could indeed allow rapid, less constrictive data processing, allowing for additional insight, quicker reaction times, and enhanced client interactions. Edge and AI-powered products and AI can instantly comprehend, understand, and make decisions and Data processes. Edge Computing on Internet of things devices can significantly decrease delay, boost performance, and enable enhanced decisions, laying the groundwork for simplified IT facilities. Furthermore, the coming of 5G technology, paired with both the potential of Edge Computing and IoT, has the potential to provide endless future opportunities.

Edge Computing's Digital Transformation across various business#

Manufacturing & Operations

Edge computing enables improved preventative analysis, improves efficiency, and energy usage, and improves dependability and effective availability in industrial enterprises [(Albukhitan, 2020)]. Edge Computing may assist businesses in making quicker and more effective marketing choices about their operational functions. Edge computing may be extremely advantageous for manufacturers engaged in places with limited or non-existent broadband.

Distribution Network

Distribution Network in Edge computing

A lot of things happen along the distribution chain's edge, and a much may go incorrect. Businesses may extend the accessibility and exposure of their distribution networks by separating activities into groups of lesser, relatively controllable activities by digitally linking and managing the operations at the edge. The information gained from the edges of distribution networks, supported by AI and computerized technologies, would assist businesses to efficiently respond to market circumstances, foresee lengthy patterns ahead of their rivals, and adapt plans at the moment down to its regional scale [(Ganapathy, 2021)].

Workplace security#

Edge computing has the potential to improve safety regulations across enterprises. The said Edge technology could indeed integrate and interpret information from on-site camera systems, worker security devices, and numerous other detectors to assist businesses in keeping tabs on employment conditions or make sure that all staff have significant compliance safety procedures, particularly when a place of work is distant or exceptionally risky [(Atieh, 2021)].

Autonomous Vehicles#

To function properly, autonomous cars will have to collect and evaluate massive volumes of data about their settings, routes, weather patterns, communicating with several other on-road automobiles, and so forth [(Liu et al., 2019)]. Edge Computing will allow self-driving cars to gather, analyse, and distribute information in real-time across automobiles and larger networks.

Retail#

Edge Computing may assist retail enterprises in maximising the usage of IoT devices and transmitting a multitude of data in real-time including monitoring, inventory management, retail sales, and so on [(Ganapathy, 2021)]. This innovation may be used to fuel Artificial intelligence and machine learning technologies, and also uncover commercial possibilities such as an efficient endcap or promotion, anticipate sales, optimise supplier procurement, and so forth.

Healthcare#

The healthcare business has seen an exponential increase in the amount of client data collected by gadgets, monitors, as well as other medical devices. Edge Computing enables organisations to gain access to data, particularly issue data, so that professionals may take quick action to assist patients to prevent health crises instantaneously (Hartmann, Hashmi and Imran, 2019).

Conclusion#

Since Edge Computing has yet to see widespread acceptance, the potential of this digitalization cannot be underestimated. Edge Computing, being the most practical infrastructure for placing computing infrastructure directly to the data source, may help organisations accelerate their Digital Transformation emphasis. The edge technology's importance will be seen broadly soon because it can successfully handle developing network difficulties connected with transporting massive amounts of data that enterprises create and consume today. It is no longer only an issue of quantity, but also of latencies because apps rely on analysis and reactions that are more time-sensitive.

Interconnection Oriented Architecture | Edge Network

Introduction#

Interconnection Oriented Architecture

The notion of 'Interconnection Oriented Architecture (IOA)' might feel complex for a network system, but it's a simpler approach that relies on what's previously established inside the technological base. IOA, or Interconnection Oriented Architecture, is a corporate network approach that uses WAN, LAN, and cloud technology to accelerate data transport over long distances whilst maintaining clients' security and compatibility in every way [(Chadha, 2018)]. It supports a dynamic corporate network that increases digital participation and digital transition throughout the organisation.

Function of IOA

An IOA exists at the crossroads of virtual and [physical networking] systems; it connects Lan and WAN networks to enable digital interaction at any site and place in your organisation. IOA is capable of creating a value approach that fits your company's demands and therefore can respond more swiftly in the future by leveraging most of your current communications infrastructure. Interconnection Architecture is a multi-layered networking strategy that consists of a linked set of nodes, each having its type of communication [(Wrabetz and Weaver, 2018)]. The edge nodes are constructed from four separate layers:

DataConnectivity
Cyber SecuritySoftware

What distinguishes IOA from SOA?#

As a technologically knowledgeable professional, you've certainly heard of business architecture concepts such as SOA. But what distinguishes SOA from IOA?

SOA is a software design method in which elements get resources via networking connectivity protocols. It is similar to a self BlackBox for a certain functional area. SOA in action is demonstrated through REST or representational data transfer [(Kasparick et al., 2018)]. Whereas IOA is an infrastructure development method based on Equinix colocation hub deployments. It addresses various key business issues that affect information and communication distribution.

Importance of IOA to businesses#

Networking is essential for effective corporate administration and consumer interaction. But why is IOA superior or more significant for your organisation than some other network technologies?

In reality, IOA solves numerous essential business difficulties and offers some unique advantages that can assist your company in adapting to and embracing the digital revolution. IOA connectivity depends on the location of the user instead of the network operator; it is vastly more extensible and adaptable than typical legacy networks [(Chauhan et al., 2019)]. This is a novel approach to addressing frequent business concerns or issues confronting your IT team.

Advantages of 'Interconnection-Oriented Architecture (IOA)#

Solving essential business challenges using IOA provides your company with a slew of new advantages, ranging from reduced latency to higher efficiency and everything else in between [(Sony, 2017)]. Whereas the advantages of IOA do not stop there, and here's a greater glance at what you may anticipate upon making the shift:

- Cut down on latency.- Encourage new economic and business developments.
- Topological Length should be reduced.- Needs of the Profession
- Enhance Real-Time Decision Processing- Handle New Digital Interaction Necessitates.
- Increase responsiveness.- Faster innovation or quicker provision of services.
- Reduce the possibility of security breaches or loss.- Improve productivity.
- Boost the overall performance of the network.- Handle Increasing Data Volume
- Increase Bandwidth or Utilization.- Accommodate the Increasing Dimensionality Of the data
- Cut your overhead expenses.- Aggregate accessibility.
- Load Balance- Enhance QoS.

What kind of enterprises should use IOA?#

Whilst the IOA is useful to any business, it is most suitable for scattered or distant companies with an in-house IT team and a distinct requirement for enterprise-wide digital communication. These businesses frequently have a large amount of critical data flowing backward and forward over the networks, necessitating greater information leak prevention and GDPR conformity [(Stocker et al., 2017)]. In reality, the deployment of an IOA will assist all departments in the organization:

Sales Division - Interact with local sales staff and interact with potential customers throughout the engagement.

Marketing Division - Coordination of marketing and material distribution with the in-site and offsite personnel in various regions.

IT Division - Ease location configuration and activation while easily managing and maintaining data security and integrity throughout the enterprise.

Human Capital - Worker conformity with regulatory authorities should be evaluated and maintained.

C-Suite - Receive real-time information and views into key performance indicators (KPIs) to communicate with shareholders and investors [(Demchenko et al., 2015)].

How does IOA fit within your current infrastructure?#

IOA integrates LAN and WAN for improved networking connectivity; therefore, whether you're currently utilising SD-WAN or hybrid cloud computing services, it is an incredible asset to your infrastructure. IOA may be pushed out one area at a time to guarantee ease of acceptance and to track and handle any problems in the process, simplifying your deployment plan.

Conclusion#

Your company's connection is critical. Obtaining the best of all worlds is not a huge burden for your IT staff, and neither would it have to mean sacrificing business solutions. Return control over the business connectivity to your IT team by going ahead with an IOA.

Content Delivery Networking | Digital Ecosystems

Presently, the success of a company entails engaging in digitalization to penetrate market opportunities, connect with consumers in unusual ways, and discover different methods and practices. This entails reversing the conventional corporate model—moving from one that would be compartmentalized and rigid to one that is interconnected and fluid.

Content Delivery Networking

Owing to enhanced digital ecosystems which thus offer all-new levels of economic development and return on investment, new types of digital business dialogue and integration (open interconnection) are now conceivable. Because, in the digital era, big players have the finest virtual connectivity, wherein they collect and administer the broadest ecosystem of brand and product suppliers [(Park, Chung and Shin, 2018)]. Digital Ecosystem Management (DEM) is a new business field that has arisen in reaction to digitalization and digital ecosystem connectivity.

Significance of digital ecosystems#

Networking impacts are introduced by [digital ecosystems]. Businesses that integrate with virtualization can create configurable business strategies comprised of adaptable programs and services that can be readily changed out when market demands and/or new technologies dictate [(Hoch and Brad, 2020)]. Implementation of change (like the worldwide COVID-19 epidemic) isn't any more the same as plotting a new path on a cruise liner. Businesses may now react instantly, more accurately, and at a cheaper price than it has ever been.

However, like with any radical transformation, appropriate execution is critical to gaining a competitive edge. Businesses must first select how they want to engage in any particular ecosystem. Instigators define the ecosystem's settings and optimize its worth. Contributors offer assistance through a wide range of commercial formats (service, channel, etc.) and create secondary interconnections. Irrespective of the purpose, each organization must understand its fundamental capabilities and enable other ecosystem participants to produce higher value than would be achievable all alone at mass.

A triad of digital ecosystems#

Every ecosystem contains a variety of people who play distinct yet interrelated and interdependent functions. Presently, there are three fundamental forms of digital ecosystems:

Platform ecosystem#

Businesses that manufacture and sell equipment comprise a platform ecosystem. Networking, memory, and computing are examples of digital fundamental building blocks, as are digital solutions and/or products.

Collaboration ecosystem#

A collaborative ecosystem is a group of businesses that focus on data, AI, machine learning, and the exchange of knowledge to create new businesses or solve complicated challenges [(Keselman et al., 2019)].

Services ecosystem#

A services ecosystem is one in which businesses supply certain business operations and make those activities accessible to other businesses as a service. This enables businesses to build new involved in supply chain models, improving their particular company's operations.

Emerging Digital ecosystem models#

The three unique digital ecosystems spanning multiple sectors include different marketplaces. Businesses from many sectors team up to engage in professional contact events, resulting in the formation of new ecosystem models. Independent retail, economic service, transportation, and logistics ecosystems, for example, are collaborating to establish a new digital ecosystem to generate more effective, value-added distribution networks [(Morgan-Thomas, Dessart and Veloutsou, 2020)].

Best practices in the digital ecosystem#

Businesses must stay adaptable when developing an integrated digital ecosystem. The goal of digital transformation is to remodel an organization's goods, processes, and strengths utilizing contemporary technology [(Gasser, 2015)]. This rethinking cannot take place unless the organization is ready to accept all of the prospective changes. Effective digital ecosystems have the following best practices:

  • The business model is being rethought.
  • Promoting an open, collaborative culture.
  • Bringing together a varied group of partners.
  • Create a large user base.
  • Make a significant worldwide impact.
  • Maintain your technological knowledge.

Gravity and network density of Digital Ecosystem#

Digital ecosystems have a gravitational pull and attract additional members. This increases network connectivity between interconnected ecosystems and data center customers. The removal of the range component eliminates or considerably reduces transmission delay, instability, and errors. Businesses may interface with partner organizations instantly and safely by employing one-to-many software-defined connectivity, such as Equinix FabricTM [(Marzuki and Newell, 2019)].

Digital Ecosystem

Interconnectivity changes the dynamics of information and correspondence time. It's the most effective way of getting enormous amounts of data and communication between an expanding number of participants—while maintaining the minimum delay, fastest bandwidth, highest dependability, and fastest connection delivery. And, because all of those linkages are private rather than public, as with the network, the likelihood of cybersecurity threats interrupting any specific ecosystem is much reduced.

Conclusion

Digital ecosystems are a crucial aspect of doing business in the current online market. The breadth of digital ecosystems is fluid, encompassing a wide variety of products, activities, infrastructures, and applications. As a business progresses from the adaptor to attacker, its effect and worth in the digital ecosystem expand from the business level to the ecosystem level. As with any management framework, businesses must change themself in the first phase before reforming their sector and ecosystem in the final phase.

Enhancing user experience and facilitating innovation with Edge Compute

Introduction#

Edge computing, which is appropriate for serverless apps and other new ways of computing, is becoming more popular among developers. Edge computation moves development services and data directly to end-users by locating the computing functionality on the network's perimeter instead of in a centralised centre [(Cao et al., 2020)]. Many businesses have centralised their operations within massive data centres as a result of cloud technology. But, emerging end-user experiences, such as the Internet of Things (IoT), necessitate service delivery nearer to the network's "edges," where actual objects reside.

edge computing platform

What is Edge Compute?#

Edge computing is the process of operating programs at the network's edge instead of on centralised equipment in a data centre or the cloud [(Premsankar, Di Francesco and Taleb, 2018)]. Nowadays, this implies virtualized computing, while various kinds of edge computing have existed in the past. The word also encompasses the whole set of technology, resources, and procedures that enable the capacity. This involves having an edge runtime environment, a programmer platform that is aligned with edge computing, an edge code deployment method, and so on.

What is an Edge device?#

Edge devices are pieces of physical machine positioned at the network's edge that have sufficient storage, processing capabilities, and computational capabilities to gather data, analyse it, and operate on it in near real-time with only little assistance from other sections of the network [(Gomes et al., 2015)]. Edge devices required network access to enable back-and-forth connectivity between both the machine and a centralised server. The data is gathered and analysed at the edge device.

When is Edge Computing useful?#

Edge computing is an attractive computing solution for a wide range of applications. It is not, though, a substitute for data centres or the cloud. Instead, the edge is indeed an extra location for code to execute. When target customers could gain through edge computing, it represents the largest value. For several reasons, developers seek to place computing near the edge when an online platform demands the lowest feasible amount of delay, and executing application programs closer to the people will achieve this aim [(Satyanarayanan, 2017)].

What are the typical use cases of edge computing?#

Edge computing can supplement a hybrid computing architecture in situations where centralised computing is employed, such as:

  • Computation-intensive workloads
  • Data collection and storage
  • Machine learning/artificial intelligence
  • Vehicles that drive themselves
  • Augmented and Virtual Reality
  • Smart Cities

Edge computing could also aid in the resolution of issues at the source of data in real-time. In general, there is indeed a use case for edge computing if decreased delay and/or real-time surveillance can serve business objectives.

The Internet of Things (IoT) - There may be several network stages in getting and processing a response for an IoT device. The greater the computing capability accessible on the machine physically, or near this in the network, the greater the customer experience.

5G - 5G is a use case for edge computing that also supports additional edge use cases.

5G and Edge computing

Mobile technologies - When concerns develop in mobile computing, issues frequently focus on delay and disruption of services. By lowering data transmission delays, it can assist solve for strict latency limitations.

Telecommunications - As network operators update their networks, workload, and operations are being moved from the network infrastructure (datacentres) to the network's edge: surrounding stations and main locations [(Moura and Hutchison, 2019)].

What are the benefits of Edge Compute?#

Edge computing has several benefits for programmers and developers. The key beneficial effect, which leads to better end-user experiences, is low latency, although it is far from the only one. Putting computation at the edge promotes innovation. It moves to control and trust choices to the edge, allowing for more real-time apps and experiences with little personal data transit. Edge computing allows programmers to "simply code" without having to handle the difficulties of procuring computing resources and distributing code just at the edge with the correct tooling [(Cao et al., 2020)].

Why do IoT and edge computing have to collaborate?#

IoT generates a tremendous volume of data, which must be handled and evaluated before use. Edge computing brings computer resources closer to the edge or source of data, including an IoT system. Edge computing is indeed a localized resource of storage and processing for IoT device information and processing requirements, reducing communication latency between IoT systems and the main IT network to which they are linked [(Ai, Peng and Zhang, 2018)].

Final Thought#

Edge computing is a valuable resource and technique in today's data centre. Many telecommunication businesses are prioritizing edge as they update their network and explore new revenue streams. Many network operators, in particular, are shifting workloads and services out from the network infrastructure (in cloud data centres) and toward the network's edge, to global locations and main offices.

Develop Digital-First Culture | Edge Computing Applications

A technology-first mindset change is happening. Digital leaders want to grow worldwide with flexibility, surge forward, and provide new world-class user experiences while doubling digital output. Making the transfer to the cloud is not only a technological or operational problem but also a huge culture shift that begins at the top, with the computers and systems accountable for assuring the success of the transformation.

Edge Computing Applications

Digital-First Culture#

Developing a digital-first culture entails more than just using cutting-edge technologies. Create an agile company where technologies and business culture collaborate to optimize processes, maximize efficiency, and provide an outstanding customer experience (Merkt, Lang, and Schmidt, 2021). To do this, corporate leaders must first work on instilling a digital-first attitude in their employees, ensuring that they are digitally literate and comfortable adjusting to new technology.

Need to Adopt a Digital-First Culture#

Business leaders cannot afford to overlook the importance of culture. It is critical to comprehend the magnitude of the digital transformation's core strategic paradigm change. Culture is the collection of attitudes and behaviors that define how things are done in a company (Tuukkanen, Wolgsjö, and Rusu, 2022).

A digitalization-friendly culture possesses the following characteristics:

  1. Encourages an external rather than an internal orientation.
  2. Delegation takes precedence over control.
  3. Emphasizes daring rather than prudence.
  4. Focuses on action rather than preparation.
  5. Prefers teamwork over solo effort.

Benefits of a Digital-First Culture#

A digital-first culture can assist the leader in future-proofing the organization and emerging as a leader who establishes new industry norms and standards. At the very least, it will assist the company in being fluid and responsive to market and socioeconomic conditions (Ghosh et al., 2021). Among the more precise benefits of engaging in a digital-first workplace are:

  • Reducing team silos and increasing openness.
  • Increasing overall agility and adaptability.
  • Enhancing data collection.

Strategies for Creating a Digital-First Culture#

  1. Concentrate on the People: Since people are typically resistant to change, introducing new technology without adequate support will not produce the expected outcomes. Furthermore, some people are concerned that automation and technology will eliminate their jobs. To effectively develop a digital-first culture, address these concerns as soon as feasible.

  2. Begin at the Top: Senior management has the key to developing a business culture. Leaders must advocate the strategy in everything they do while attempting to develop a digital-first culture. Set a good example.

  3. Embrace Technology: Digitization reduces the possibility of data loss or missing crucial information. That is why it is critical to integrate your various technologies as much as possible so that diverse company operations can run smoothly.

  4. Share a Common Vision: Managers, executives, and employees all need to push for the same goal: the success of the company. When writing job descriptions, be sure to include the technological tools, talents, and working style that the company anticipates (Kontić and Vidicki, 2018).

Developing a Cloud Mindset#

Hybrid cloud migration is about more than just technology; it is also a huge culture shift that necessitates careful consideration of the systems and technology involved in the journey. A transition to the cloud necessitates a much broader change in management style than other innovation initiatives due to the impact on skills and money, as well as on both commercial and technology goals (Marty, 2014).

Bringing the "cloud mindset" to use!

Edge Computing for Enterprises

A transition to the cloud necessitates a much deeper change in management style than many other technology-driven initiatives due to the influence on skills and money, as well as on both business and technical goals. Rather than lifting VM instances and throwing them over the wall into somebody else's data center, organizations should shift to a "move and improve" mindset that allows them to accept the cloud's native functionality to deliver various business benefits (Solberg, Traavik, and Wong, 2020).

Thinking “Cloud-First” vs “Lift and Shift”#

The capacity to benefit from the cloud's flexibility, scalability, and safety does not come by just transferring VM instances to a cloud computing platform; leaders must think very differently regarding existing software and services and think cloud-first.

Leaders should look for a cloud partner that not only knows how to construct and maintain world-class data centers but will also work with them to establish the culture and processes required for the business to be successful in the cloud (Baumgartner, Hartl, and Hess, 2021).

Conclusion#

Certainly, digital transformation is all about a new attitude as much as it is about technology. As part of the overall organizational change plan, organizations should be able to create a cultural roadmap and a cultural change strategy, which will then be a component of the entire transformation program (Ghosh et al., 2021).

Following a meaningful digital transformation, a plan is more than just checking boxes. Cloud - Check. Mobile app - Check. A brand-new website - Check. If it were that simple, everyone would have done it by now.

Why Hybrid Cloud? An overview of the top benefits of hybrid

[hybrid cloud computing

Hybrid cloud Solutions are becoming more popular. A hybrid cloud infrastructure combines workload mobility, automation, and administration over two or several data centres, generally a mix of private (on-premise) and public (off-premise) clouds. Originally, public clouds were hosted off-site, whereas private clouds were hosted on-site. Some public cloud services are hosted in their clients; on-premise data centres, while some businesses are increasingly constructing private clouds in vendor-owned, off-premises data centres. The mix of private and public cloud platforms that allows applications to migrate between both the two interrelated domains is the cornerstone of a hybrid cloud paradigm (Aktas, 2018). This portability across cloud services allows enterprises to be more flexible and agile in their information configurations. Every hybrid cloud system is unique since the specific architecture is determined by the organization's objectives and goals. In this article, we'll go over the fundamentals of hybrid cloud services and describe the primary benefits of moving to a hybrid model.

hybrid cloud computing
cloud computing solutions

The Most Common Applications of a Hybrid Cloud#

Solution:

In the last decade, hybrid cloud solutions have enabled enterprises to gain a competitive edge by gaining on-demand access to greater capacity features and functionality than they could build up in their data centres (Celesti et al., 2019).

Typical hybrid cloud use cases include:#

  • Ease into Cloud Migration

  • Optimize Workload Resources

  • Protect Your Data

  • Process Large Data Sets

Hybrid cloud benefits

Enterprise businesses may benefit from hybrid cloud computing in a variety of ways.

Cloud Bursting can help you meet high service demand:

Hybrid clouds enable enterprises to meet peak load for applications or services without incurring the significant expense of functionality to support their existing data centres.

Make Data and Applications Available to Remote Workers:

Employees of any business with valid authorisation can access cloud-hosted data and apps from anywhere around the globe. Organizations that use hybrid cloud solutions may use their network to give employees remote connection to cloud-based and on-premises data and apps (Talaat et al., 2020).

Observe Data Privacy and Localization Laws:

Organizations that use hybrid cloud solutions do not have to create data centres in each nation in which they operate. They could store domestically collected customer information in public cloud locations that meet data localization criteria while still protecting their customers' privacy as needed by law.

Improve Data Security and Protect Sensitive Data:

When it comes to digital security, hybrid cloud solutions provide enterprises with more options. Businesses can keep their more confidential material in on-premise data centres that are difficult to assault by hostile actors.

Increase the operational scalability:

Public cloud service providers have enabled storage capacity and computational power more inexpensive and available to enterprises on a large scale. Organizations may grow their operations as required, avoiding capital expenses and management obligations (Segec et al., 2020).

Enhance your disaster recovery and business continuity:

When an organisation encounters a service outage and must implement its disaster recovery strategy to ensure business continuity and minimise unexpected downtime that negatively affects the customer experience, portable apps through hybrid clouds provide a substantial competitive advantage.

Reduced IT and operational costs:

Higher utilisation rates for IT resources, lower costs and more effective IT expenditure are all advantages of hybrid cloud enterprises.

Get your hands on cutting-edge tools and technologies:

When it comes to researching and adopting best-of-breed solutions to meet any application workload, organisations with hybrid cloud capabilities have the most options.

Encourage innovation:

Hybrid cloud solutions are boosting innovation by making it easier for businesses to establish new services and enabling them to better fulfil their consumers' demands

(Barbierato et al., 2021). Businesses may utilise public cloud services to build and test new apps before deploying them to production.

Cons of moving to the hybrid cloud:

While a hybrid cloud model has numerous advantages, it may not be the best choice for every firm. Depending on the company's aims, funding, and experience, the disadvantages may exceed the benefits.

Hardware costs:

One of the benefits of a hybrid cloud approach is its flexibility, control, and personalization. However, such advantages come at the expense of extra hardware expenses (Vera et al., 2019).

Need to manage multiple vendors and platforms

Running a hybrid cloud requires keeping track of different suppliers and platforms and managing them across two computing environments.

Lack of visibility:

Cloud solutions are always complicated. When your computing environments are spread across two or more clouds, the task becomes considerably more challenging.

This might make establishing a clear image of your total cloud environment challenging.

Conclusion:#

Finally, you must assess the advantages and downsides of a hybrid solution with the organization's needs and priorities, but just a hybrid cloud model is a wonderful alternative for corporate firms seeking the most of both technological environments.

A hybrid model allows for keeping control over highly sensitive information while also allowing businesses to extend their activities quickly and reliably without spending a lot of money (Feng et al., 2019).

View this blog in video form!

Gaming Industry’s Globalisation | Best Edge Platform

Gamers of all levels want programmers to employ new methods and future technologies to drive the gameplay adventure ahead, making games more realistic and demanding than ever before. The video game industry's globalisation and technical requirements are also expanding, with more powerful computer game visual effects demanding super strength processing capacity, increased displays, amazing adapters, and low latency networks. Several of today's most popular video games include racing or battle, which need a good response time and, as a consequence, a quick internet speed. These features are demanded by a large number of players, particularly enthusiasts and casual gamers. If any of the world's biggest gaming companies are to be believed, games' fate is sealed inside metal cages (Coward-Gibbs, 2019). It's placed on technological racks, blazing with little green lights, and computed within densely packed processors and shot out of remote servers over massive underground connections.

edge computing for gaming companies

The Future of Hardware PC Gaming

Video games have already been offering amusement for both kids and adults for generations. They've come a long way since the early days of video games and the original Nintendo and Atari consoles. Video games have gotten more lifelike than ever before, with pixelated graphics and restricted acoustics becoming a distant past. Video games improve in tandem with technological advancements. The expense of developing a game for one of the operating systems has grown in tandem with the rising sophistication of video game development. It was previously inconceivable to spend millions on game production, but today's games may cost tens of millions if not hundreds of millions of dollars.

The video game industry is enormous. It is bigger than the film and music businesses together, and it's just becoming bigger. Though it does not receive the same level of attention as the film and music industries, there are over two billion players worldwide. This equates to 26% of the world's population.

Gamers are pushing the limits of computer hardware to get an advantage. People who purchase pricey GPU PCs that lead to better performance over other video game players appear to be the next occurrence. Consoles like the PS4 and Xbox are extremely common in the consumer market, but people who purchase pricey GPU PCs that give them an edge over other gamers appear to be the next occurrence (van Dreunen, 2020). The pull of consoles is still powerful. When it comes to giving an unrivalled gaming experience, nothing beats a gaming PC. It's wonderful to imagine that players will be able to play the latest FPS games at 60 frames per second or higher.

cloud gaming services

Cloud Service Providers Have Replaced Game Consoles#

The method video games and smartphone games are made, distributed, and performed has altered as a result of broad cloud use and availability. The duration has sped up dramatically. If a user has an online connection, they may now acquire different releases of games irrespective of where they are, cutting down on the time it takes to buy games, additional content, and add-ons. Cloud gaming, unlike video game systems such as consoles, shifts content delivery from the device to the cloud. Gamers broadcast games as reduced video frames, similar to how Netflix streams videos. The distinction is that if a key is pushed, the data is routed to a distant cloud server, which subsequently delivers the latest video frame. All of this occurs in a split second and seems to be identical to a game that has been downloaded into a device (Yates et al., 2017).

Microsoft, for example, has been migrating Xbox consoles to Xbox Cloud Computing services, which operate virtual Xbox controllers in its server farms and provide an experience similar to that of a home Xbox console. Microsoft is now updating to the Xbox Series X hardware, which offers faster load times, improved frame rates, and optimised games, as well as compatibility for streaming on bigger screen devices. Similarly, in October 2020, Amazon launched Luna, a cloud gaming service that offers unlimited game access. Luna makes use of a local gamepad controller that connects over a separate Wi-Fi connection to alleviate input latency in games.

Edge Gaming - The Gaming Attractiveness of Edge Computing#

The majority of game computation is now done on gadgets locally. While some computing may be done on a cloud server where a device can transmit data to be analysed and then delivered, these systems are often located far away in enormous data centres, which implies the time required for such data to be delivered will eventually diminish the gameplay experience.

Instead of a single huge remote server, mobile edge computing depends on multiple tiny data centres that are located in closer physical proximity. So because devices won't have to transfer data to a central computer, process it, and then deliver the information, users can preserve processing power on the device for a better, quicker gaming experience (Schmoll et al., 2018).

Conclusion#

The desire for additional gaming platforms and greater levels of involvement is growing, and game creators and businesses must take advantage of this. The player experience will alter radically as these new technologies become more common, and a new generation of hugely multiplayer modes will be introduced online, attracting new consumers. Gaming is taking over the media world. If you are unfamiliar with this information, please take a look around. While cloud gaming is still in its early stages, it demonstrates that computation can take place outside of the device. Developers should turn to edge gaming to create an experience wherein gamers can engage in a real-time multiplayer scenario since cloud gaming has always had physical difficulties (Paolo Ruffino, 2018).

How Can 5G Connections Deliver 100 Times Faster Speeds and Monetize

In this age of the internet, customers seek faster, stronger, better accessible, and more innovative data rates. Most users want to view videos on their phones as well as download files and operate a variety of IoT devices. They expect a 5G connection to deliver 100 times faster speeds, ten times greater capacity, and ten times lower latency. The shift to 5G requires considerable expenditures from telecommunications companies (Ahokangas et al., 2019). To provide new income streams and enable better effects and cost-effective processes, BSS should advance in tandem with 5Generation network installations. So get ready to face the difficulties of 5G monetization.

What is 5G Monetization?#

The commercialization of 5G is a hot topic. "Utilising the 5G customer possibility" and "5G, as well as the Business Potential" are two studies that go through the various market prospects. It illustrates that, in the long term, there is still a tremendous new income opportunity for carriers at multiple solution rates, targeted regions, and industrial control. "Taking liberties with 5G commercial patterns" highlights what AR/VR entertainment, Fixed Wireless Access (FWA), and 3D graphics experience might be supplied via B2C, B2B, and B2B2X interaction designs. Network operators should analyse their BSS progression along with their 5G facilities to fulfil the 5G obligations of greater network rate of speed and frequency band, ultra-low latency, fully convinced quality of service, communication, and flexibility. Operators must take the chance or risk missing out on some of these potential applications when they become a reality (Dramitinos, Stamoulis, and Lonsethagen, 2017). 5G monetization is among the capabilities that will allow companies to deliver on their 5G commitments right away. To satisfy 5G use cases and deliver the full potential of 5G, CSPs must upgrade their BSS in parallel with their 5G rollout, or face falling behind in the 5G competition for profitable technology.

Addressing the Development of the BSS Architecture#

To effectively understand the benefits of 5G monetization, network operators must consider the growth of their telecommunication BSS from a range of viewpoints:

  • 5G Convergent Charging System (CCS): These latest 5G Basic specifications define a CCS, which includes a 5G Charging Function (CHF), that enables merged charges and expenditure limitation management in the modern business design. The CHF is triggered by both physical and digital activities and either triggers the OCS (online charging system) for internet grading or generates an uncensored EDR (event data record) for offline grading (Stojanović, Radenković, and Bogdanović, 2021).

  • Orchestration, Completion, and Guarantee of Service: As more distributed systems and commercial services arise, service synchronization and fulfilment must become more difficult and stringent to guarantee that commodities, bundles, and trials, involving own and third-party items, are discussed, acquired, and engaged as soon as customers demand them.

  • Exposure: As the 5G network connects new business opportunities and sectors, distributors must ensure that existing BSS features are available to anyone who wants to safely use those via standardized TMF Open APIs. Additional BSS apps, adjacent layers including OSS and Core network, or third parties and collaborators who extend 5G products with their own capabilities might all be consumers of BSS APIs.

  • Cloud Architecture: The productivity, efficiency, versatility, and robustness required by 5G systems and services necessitate a new software design that considers BSS installations in the cloud, whether private, public, or hybrid.

Network operators are unlikely to entirely alter current BSS in all of these sectors at the very same time. Future 5G earnings won't all be available right away; they'll arrive in waves as various markets and sectors mature. To determine when business development will begin or how this process or path will appear, carriers must consider their unique scenario, success in the market, desired place in the 5G supply chain, and evolutionary competence (Yeh et al., 2020).

The AR Gaming Use Case and Intelligent Operations#

The 5G Core along with BSS and OSS all in place will bring along a potential partner: a cloud gaming provider that intends to promote [AR gaming] to the carrier's subscribers. For such gaming data, companies want a specific network segment with an assured level of service. Each collaborator can demand their network connection and establish their SLAs using distribution platforms in a smart, fully automated network. BSS breaks down this ordering into multiple sub-orders, like the construction and deployment of the particular portion via the OSS, when it receives it. All specified SLAs are simply assigned in the particular portion at the very same time, and verification begins monitoring the defined indications immediately. There is no human interference in any of this.

The operator additionally uses its archive design to describe the service offering that its customers will acquire in addition to being implemented on the partner's particular portion all in one location (Smith and Ugolini, 2021). This promotion is immediately disseminated to all relevant systems, including online charging, CRM, and digital platforms, and may be consumed immediately. It's also accessible to partners via an API, who may combine it with additional perks while offering it to customers. The operators can utilize smart suggestions to target individual customers with the new offer depending on their consumption habits and behavior.

cloud gaming services
cloud gaming services

Conclusion for 5G Monetization#

Ultimately, whenever a customer decides to buy a package, they automatically implement it in the network segment, often without touching the system. The partners would be able to monitor the networking health-related level of performance details for every customer instantaneously and will also be ready to obtain immediate decisions or conduct offers based on this data. New platforms can adapt to changes based on factual capacity because of the BSS cloud architecture (Peterson and Sunay, 2020). Every detail relating to transactions, items, network bandwidth, and profitability goals, along with other factors, is given back into circulation and utilized as parameters for networking and inventory development in a confined manner.

Artificial Intelligence at Edge: Implementing AI, the Unexpected Destination of the AI Journey

Implementing AI: Artificial Intelligence at Edge is an interesting topic. We will dwell on it a bit more.

This is when things start to get interesting. However, a few extreme situations, such as Netflix, Spotify, and Amazon, are insufficient. Not only is it difficult to learn from extreme situations, but when AI becomes more widespread, we will be able to find best practices by looking at a wider range of enterprises. What are some of the most common issues? What are the most important and effective ways of dealing with them? And, in the end, what do AI-driven businesses look like?

Here are some of the insights gathered to capture, learn from, and share from approximately 2,500 white-collar decision-makers in the United States, the United Kingdom, Germany, India, and China who had all used AI in their respective firms. They were asked questions, and the responses were compiled into a study titled "Adopting AI in Organizations."

Artificial Intelligence and Edge computing

Speaking with AI pioneers and newcomers#

Surprisingly, by reaching out on a larger scale, a variety of businesses with varying levels of AI maturity were discovered. They were classified into three groups: AI leaders, AI-followers, and AI beginners, with the AI leaders having completely incorporated AI and advanced analytics in their organizations, as opposed to the AI beginners who are only starting on this road.

The road to becoming AI-powered is paved with potholes that might sabotage your development.

In sum, 99 percent of the decision-makers in this survey had encountered difficulties with AI implementation. And it appears that the longer you work at it, the more difficult it becomes. For example, 75 percent or more of individuals who launched their projects 4-5 years ago faced troubles. Even the AI leaders, who had more efforts than the other two groups and began 4-5 years ago, said that over 60% of their initiatives had encountered difficulties.

The key follow-up question is, "What types of challenges are you facing?" Do you believe it has something to do with technology? Perhaps you should brace yourself for a slight shock. The major issue was not one of technology. Rather, 91 percent of respondents stated they had faced difficulties in each of the three categories examined: technology, organization, and people and culture. Out of these categories, it becomes evident that people and culture were the most problematic. When it comes to AI and advanced analytics, it appears that many companies are having trouble getting their employees on board. Many respondents, for example, stated that staff was resistant to embracing new ways of working or that they were afraid of losing their employment.

As a result, it should come as no surprise that the most important strategies for overcoming challenges are all related to people and culture. Overall, it is clear that the transition to AI is a cultural one!

A long-term investment in change for Artificial Intelligence at Edge#

Artificial Intelligence at Edge

But where does this adventure take us? We assume that most firms embarking on an organizational transformation foresee moving from one stable state to a new stable one after a period of controlled turbulence. When we look at how these AI-adopting companies envisage the future, however, this does not appear to be the case!

Conclusion for Artificial Intelligence at Edge:#

To get a sense of what it'll be like to be entirely AI-driven, researchers looked to the AI leaders, who have gone the furthest and may have a better idea of where they're going. This group has already integrated AI into their business or plans to do so by the year 2021. You'd think that after properly implementing and delivering AI inside the organization, they'd be satisfied with their work. They're still not finished. Quite the contrary, they aim to invest much more in AI over the next 18 months and on a far larger scale than previously. The other two groups had far smaller investment plans.

Computing versus Flying Drones | Edge Technology

Multi-access edge computing (MEC) has evolved as a viable option to enable mobile platforms to cope with computational complexity and lag-sensitive programs, thanks to the fast growth of the Internet of Things (IoT) and 5G connectivity. Computing workstations, on the other hand, are often incorporated in stationary access points (APs) or base stations (BSs), which has some drawbacks. Thanks to drones' portability, adaptability, and maneuverability, a new approach to drone-enabled airborne computing has lately received much interest (Busacca, Galluccio, and Palazzo, 2020). Drones can be immediately dispatched to defined regions to address emergency and/or unanticipated needs when the computer servers included in APs/BSs are overwhelmed or inaccessible. Furthermore, relative to land computation, drone computing may considerably reduce work latency and communication power usage by making use of the line-of-sight qualities of air-ground linkages. Drone computing, for example, can be useful in disaster zones, emergencies, and conflicts when grounded equipment is scarce.


Drones as the Next-Generation Flying IoT#

Drones will use a new low-power design to power the applications while remaining aloft, allowing them to monitor users and make deliveries. Drones with human-like intelligence will soon be able to recognize and record sportsmen in action, follow offenders, and carry things directly to the home. But, like with any efficient system, machine learning may consume energy, thus research on how to transfer a drone's computing workloads to a detector design to keep battery use low to keep drones flying for very much longer is necessary. Drones are a new type of IoT gadget that flies through the air with complete network communication capabilities (Yazid et al., 2021). Smart drones with deep learning skills must be able to detect and follow things automatically to relieve users of the arduous chore of controlling them, all while operating inside the power constraints of Li-Po batteries.

Drone-assisted Edge Computing#

Drone-assisted Edge Computing

The 5G will result in a significant shift in communications technologies. 5G will be required to handle a huge amount of customers and networking equipment with a wide range of applications and efficiency needs (Hayat et al., 2021). A wide range of use instances will be implemented and back, with the Internet of Things (IoT) becoming one of the most important due to its requirement to communicate a large number of devices that collect and transmit information in numerous different applications such as smart buildings, smart manufacturing, and smart farming, and so on. Drones could be used to generate drone cells, which also discusses the requirement for combining increasing pressure of IoT with appropriate consumption of network resources, or perhaps to establish drones to deliver data transmission and computer processing skills to mobile users, in the incident of high and unusual provisional incidents generating difficult and diverse data-traffic volume.

How AI at the Edge Benefits Drone-Based Solutions#

AI is making inroads into smart gadgets. The edge AI equipment industry is growing at a quicker rate due to the flexibility of content operations at the edge. Data accumulation is possible with edge technology. Drones, retail, and business drones are rising in popularity as edge equipment that creates data that has to be processed. Drones with Edge AI are better for construction or manufacturing, transportation surveillance, and mapping (Messous et al., 2020). Drones are a form of edge technology that may be used for a variety of tasks. Visual scanning, picture identification, object identification, and tracking are all used in their work. Drones using artificial intelligence (AI) can recognize objects, things, and people in the same manner that humans can. Edge AI enables effective analysis of the data and output production based on data acquired and delivered to the edge network by drones, and aids in the achievement of the following goals:

  • Object monitoring and identification in real-time. For security and safety purposes, drones can monitor cars and vehicular traffic.
  • Infrastructure that is aging requires proactive upkeep. Bridges, roads, and buildings degrade with time, putting millions of people in danger.
  • Drone-assisted surveillance can help guarantee that necessary repairs are completed on time.
  • Face recognition is a technique for recognizing someone's face whereas this prospect sparks arguments about the technology's morality and validity, AI drones with face recognition can be beneficial in many situations.

Drones may be used by marketing teams to track brand visibility or gather data to evaluate the true influence of brand symbol installation.

Challenges in Drone-Assisted Edge Computing#

Drone computing has its own set of challenges such as:

  • Drone computing differs greatly from ground computation due to the extreme movement of drones. Wireless connectivity to/from a drone, in particular, changes dramatically over time, necessitating meticulous planning of the drone's path, task distribution, and strategic planning.
  • Computational resources must also be properly apportioned over time to guarantee lower data energy usage and operation latency. A drone's power flight plan is critical for extending its service duration (Sedjelmaci et al., 2019).
  • Due to a single drone's limited computing capability, many drones should be considered to deliver computing services continuously, where movement management, collaboration, and distribution of resources of numerous drones all necessitate sophisticated design.

Conclusion#

In drone computing, edge technology guarantees that all necessary work is completed in real-time, directly on the spot. In relief and recovery efforts, a drone equipped with edge technology can save valuable hours (Busacca, Galluccio, and Palazzo, 2020). Edge computing, and subsequently edge AI, have made it possible to take a new and more efficient approach to information analysis, resulting in a plethora of information drone computing options. Drones can give value in a range of applications that have societal implications thanks to edge technology. [Edge data centres] will likely play a key part in this, maybe aiding with the micro-location data needed to run unmanned drone swarms in the future. Increasing commercial drone technology does have the ability to provide advantages outside of addressing corporate objectives.

Read more about the Other Edge Computing Usecases.

How and Why of Edge and AR | Edge Computing Platform

Mobile Edge Computing (MEC) can aid is with real estate property browsing. MEC can provide a two-fold answer. Most buyers look at many residences and don't make decisions without viewing them. Engaging Mobile Edge Computing (MEC) applications like augmented reality (AR) and virtual reality (VR) demonstrate strong opportunities to connect the external and simulated worlds, whether it's putting a virtual couch in your sitting room as part of an interactive retail setting or allowing forecasting refurbishment steered by actual data as well as a layering of step-by-step graphic guidelines. As an element of synchronized and safe processes, the objective is to allow all sides to see what other sees. Combining smartphones and tablets, iPads, and smartwatches with virtual collaborative technologies redefine learning and allow product specialists to help from a distance (Ambrose and Shen, 2021). The goal is to make the distant assessment, replacement, and service of existing goods more efficient.

AR (augmented reality) and VR (virtual reality) are still considered specialized innovations which have yet to be widely accepted. A lot of it comes down to the issues that edge computing can now solve. Following the commercial release of 5G, AR (augmented reality) and VR (virtual reality) encompasses a slew of innovative application cases that, when combined by the edge of the network, will provide significant value to the sector and businesses. Applying virtual layers to live sights is what augmented reality is all about. It can be performed with a device, but in business, wearable technology is much more probably to be used. VR is total absorption in a digital perspective that requires the use of a set of glasses that block the user's view of the world surrounding them (Gerasimova, 2019).

The real estate sector is likely to be transformed by this technology, which some belief would make property hunting more effective. It can help purchaser's picture houses in progress and alleviate the stress of moving to the new location or purchasing from overseas.

Virtual Reality | Edge Computing Technology
Virtual Reality | Edge Computing Technology

What role does Edge and AR play in wooing customers in property hunting?#

With AR (augmented reality), real estate reaches new heights in terms of providing consumers with a more efficient and interesting visual journey. Retailers may now transport them to any destination they like. Offer visitors a digital tour to relieve the stress of having to figure out road signs and building numbers while travelling. People will also have a complete image of the place after they have had the opportunities to explore it. Aside from the ease, it provides to property buyers, it also assists real estate brokers in other ways. Augmented Reality may also be used for branding and advertising (Lang and Sittler, 2012).

The following are some of the marketing aspects of augmented reality for property investment:

  • More dynamic print catalogues and large boards are being developed.
  • Spatial that really can help for-sale properties in real-time.
  • Get an interactive function in the app so a potential buyer may reach out to the retailer right away.
  • A larger audience

How to Use Virtual Reality in Property Hunting?#

Virtual reality performs a vital part in the property market, from real estate development to housing developments. Let's take a look at several ways that may use virtual reality property hunting:

  • Guided Visits: Property hunters, on the whole, compile a list of properties they wish to see and then go to the locations. Some residences are nearby, while some are on the periphery. As a result, planning a visit and narrowing down a list of prospective homes becomes physiologically and psychologically demanding. VR in the housing market efficiently overcomes all of these issues (Pleyers and Poncin, 2020).

  • Participatory Visits: Participatory visits are growing in popularity these days. The key difference between supervised and participatory trips would be that active trips allow property hunters to tap on the display and zoom in on certain areas of the property.

  • Virtual Staging: The term "virtual staging" refers to the technique of electronically furnishing vacant places. Simply defined, VS is a property investment internet marketing tactic that lets customers see themselves in completely furnished homes.

  • Communication: Modern residences and ultra-luxury homes now provide a variety of public utilities. While such products and services provide convenience, they may also be perplexing sometimes.

The Benefits of Edge-VR in Property Hunting:#

  • Time and money-saving.
  • Creates an emotional bond.
  • Profits increased.
  • Experimentation is simple.
  • Reach Out to a Larger Audience

What is the difference between VR and AR?#

AR and VR are both disruptive technologies, they have some significant distinctions:

Virtual Reality (VR)Augmented Reality (AR)
Creates a fantastical world.The real world is mingled with visuals or other factors.
A portable device or a head-mounted gadget is required.Apps are available for smartphones, tablets, and PCs.
Objects cannot be added or changed by customers.It's simple to add, remove, or edit items.

Conclusion for Edge and AR#

Several businesses that are willing to embrace augmented reality are unable to do so due to limitations in their capacity to exchange data on the cloud. Companies may utilise graphical tools and applications like Zoom or Microsoft Exchange for normal communication, but they can't use the same cloud-based solutions for critical organisational activities like learning, support, or technical access because of data security and privacy ownership issues. AR and VR are on the verge of allowing participants to take their immersive experience with others, which is something that most people like about property hunting. In terms of what's feasible, both AR and VR are advancing at breakneck speed (Deaky and Parv, 2017). It's nearly a perfect match for property hunting.

To know the benefits of Edge Computing please read: Differentiation Between Edge Computing and Cloud Computing

5G Technology Shaping the Experience of Sports Audiences

Introduction#

Sports fans are seeking an enhanced experience through their portable devices in this era of online and mobile usage. As consumers grow more intelligent and demand interactive, inventive, and entertaining experiences, the number of virtual events is expanding. This pushes the envelope for the style and durability of events. The future development of cellular wireless communication technology can produce improved engagement, changing how audiences experience sports, including live-streaming video, 3D virtual interactions, and real-time access to sports statistics. The integration of 5G, AR, and VR in sports allows for entirely new user interactions, breaking limits and bringing the audience closer to the action. In an evolving sports network, connectivity and flexibility offer new benefits for teams playing in front of crowded arenas or single racers on a wooded course. This is why 5G can become a valuable resource for the sports industry as it strives to revolutionize audience engagement both at home and in the stadium. Sporting activities might offer a greater experience for both the traveling fan who attends each event live and the die-hard fan who watches every event on TV.

5G tech for sports audience
5G for sports

5G is a Dependable and Tremendously Fast Network#

5G is 5 to 20 times more efficient than 4G. It can broadcast and read packets almost instantly, with times as low as 10 milliseconds in certain conditions. Beyond high-speed internet connections, there will be significant improvements in the reliability and performance of visual and voice calls, as well as faster playback. Due to its speed and latency, 5G will facilitate technological advances such as AR and VR, touch-capable devices, robotics, self-driving vehicles, and the IoT. Furthermore, it can be used in conjunction with Artificial Intelligence and machine learning. 5G is a game-changer, with the potential to usher in the next technological revolutions.

Influence of 5G in Sports (Present and Future)#

The increased capacity and reduced latency of 5G will unlock a variety of new capabilities for spectators and athletes alike. Here are some advantages:

A Thrilling and Comprehensive Stadium Experience#

Sports fans are searching for new ways to interact with the game on a virtual level. With the emergence of 360º camera systems, AR, and VR, there is an opportunity to develop more realistic fan interactions. Fans may stroll the sidelines, see from the athletes' perspectives, and enjoy celebrations in the dressing room, all from the comfort of their homes. 5G could add a new level of sophistication to stadium experiences. Real-time AR technologies and immersive VR options will enhance pre-game festivities and allow spectators to experience 4K/UHD data without a large physical display. Fans could also explore various parts of the event virtually as if they were there in person.

Creating an Integrated Arena#

Attending live sports events requires a positive stadium environment. 5G can enhance this experience by connecting equipment in real-time with incredibly low latency, creating new possibilities. It could improve the overall environment for spectators by providing high-quality video streaming and new perspectives from 360º, ultra-high-resolution VR cameras using smartphones.

Digital Transformation of Sports#

The sports and entertainment sectors are leveraging 5G to transform fan experiences. Telecommunications operators, organizations, clubs, event coordinators, and media firms are all investing in this technology. Key focus areas for the digital transformation of sports include:

  1. Improve the live experience for fans at venues.
  2. Bring fans at home closer to the action.
  3. Integrate pre and post-event activities into the holistic experience.
  4. Develop experience-centric sports districts.

Conclusion for 5G in Sports#

The launch of 5G will significantly impact the sporting industry. It will not only provide lightning-fast speeds but also support advanced technologies like VR and AR, and enhance network connectivity. Fans, players, trainers, venues, and spectators will all benefit. 5G also enables fixed wireless connectivity for higher-quality streaming in 4K, 360 videos, or AR/VR formats in areas without fiber connectivity. The deployment of 5G in sports arenas will create a broad framework supporting various applications, allowing fans to experience performances in real-time during practice and competition. This presents a significant opportunity for network operators to deploy upgraded connections in sports stadiums and ensure effective engagement. 5G is poised to revolutionize sports with fresh applications, and the transformation is already underway.

5G Network Area | Network Slicing | Cloud Computing

Introduction#

5G has been substantially implemented, and network operators now have a huge opportunity to monetize new products and services for companies and customers. Network slicing is a critical tool for achieving customer service and assured reliability. Ericsson has created the most comprehensive network slicing platform, comprising 5G Radio Access Networks (RAN) slicing, enabling automatic and quick deployment of services of new and creative 5G use scenarios, using an edge strategy (Subedi et al., 2021). Ericsson 5G Radio Access Networks (RAN) Slicing has indeed been released, and telecom companies are enthusiastic about the possibilities of new 5G services. For mobile network operators, using system control to coordinate bespoke network slices in the personal and commercial market sectors can provide considerable income prospects. Ericsson provides unique procedures to ensure that speed and priority are maintained throughout the network slicing process. Not only do they have operational and business support systems (OSS/BSS), central, wireless, and transit systems in their portfolio, but they also have complete services like Network Support and Service Continuity (Debbabi, Jmal and Chaari Fourati, 2021).

What is 5G Radio Access Networks (RAN) Slicing?#

The concept of network slicing is incomplete without the cooperation of communication service providers. It assures that the 5G Radio Access Networks (RAN) Slicing-enabled services are both dependable and effective. Carriers can't ensure slice efficiency or meet service contracts unless they have network support and service continuity. Furthermore, if carriers fail to secure slice performance or meet the service-level agreement, they may face punishment and the dangers of losing clients (Mathew, 2020). Ericsson 5G Radio Access Networks (RAN) Slicing provides service operators with the unique and assured quality they have to make the most of their 5G resources. The novel approach was created to improve end-to-end network slicing capabilities for radio access network managing resources and coordination. As a consequence, it constantly optimizes radio resource allocation and priority throughout multiple slices to ensure service-level commitments are met. This software solution, which is based on Ericsson radio experience and has a flexible and adaptable design, will help service providers to satisfy expanding needs in sectors such as improved broadband access, network services, mission-critical connectivity, and crucial Internet of Things (IoT) (Li et al., 2017).

5g network

Ericsson Network Support#

Across complex ecosystems, such as cloud networks, Network Support enables data-driven fault isolation, which is also necessary to efficiently manage the complexity in [5G systems]. To properly manage the complexity of 5G networks, Ericsson Network Support offers data-driven fault isolation. This guarantees that system faults are quickly resolved and that networks are reliable and robust. Software, equipment, and replacement parts are divided into three categories in Network Support. By properly localizing defects and reducing catastrophic occurrences at the solution level, Ericsson can offer quick timeframes and fewer site visits. Ericsson also supports network slicing by handling multi-vendor ecosystem fault separation and resolving complications among domains (Zhang, 2019). Data-driven fault isolation from Ericsson guarantees the quick resolution of connection problems, as well as strong and effective networks, and includes the following innovative capabilities:

  • Ericsson Network Support (Software) provides the carrier's software platform requirements across classic, automated, and cloud-based services in extremely sophisticated network settings. It prevents many mishaps by combining powerful data-driven support approaches with strong domain and networking experience.
  • Ericsson Hardware Services provides network hardware support. Connected adds advanced technologies to remote activities, allowing for quicker problem identification and treatment. It integrates network data with past patterns to provide service personnel and network management with relevant real-time information. It is feasible to pinpoint errors with greater precision using remote scans and debugging.
  • The Spare Components Management solution gives the operator's field engineers access to the parts they need to keep the network up and running (Subedi et al., 2021). Ericsson will use its broad network of logistical hubs and local parts depots to organize, warehouse, and transport the components.

Ericsson Service Continuity#

To accomplish 5G operational readiness, Service Continuity provides AI-powered, proactive assistance, backed by tight cooperation and Always-On service. Advanced analytical automation and reactive anticipatory insights provided by Ericsson Network Intelligence allow Service Continuity services. It focuses on crucial functionality to help customers reach specified business objectives while streamlining processes and ensuring service continuity (Katsalis et al., 2017). It is based on data-driven analysis and worldwide knowledge that is given directly and consists of two services:

  • Ericsson Service Continuity for 5G: Enables the clients' networks to take remedial steps forward in time to prevent end-user disruption, allowing them to move from responsive to proactively network services.
  • Ericsson Service Continuity for Private Networks is a smart KPI-based support product for Industry 4.0 systems and services that is targeted to the unique use of Private Networks where excellent performance is critical (Mathew, 2020).
Network Slicing and Cloud Computing

Conclusion for 5G Network Slicing

Network slicing will be one of the most important innovations in the 5G network area, transforming the telecommunications sector. The 5G future necessitates a network that can accommodate a diverse variety of equipment and end customers. Communication service providers must act quickly as the massive network-slicing economic potential emerges (Da Silva et al., 2016). However, deciding where to begin or where to engage is difficult. Ericsson's comprehensive portfolio and end-to-end strategy include Network Support and Service Continuity services. Communication service providers across the world would then "walk the talk" for Network Slicing in the 5G age after incorporating them into their network operations plan.

References#

  • Da Silva, I.L., Mildh, G., Saily, M. and Hailu, S. (2016). A novel state model for 5G Radio Access Networks. 2016 IEEE International Conference on Communications Workshops (ICC).
  • Debbabi, F., Jmal, R. and Chaari Fourati, L. (2021). 5G network slicing: Fundamental concepts, architectures, algorithmics, project practices, and open issues. Concurrency and Computation: Practice and Experience, 33(20).
  • Katsalis, K., Nikaein, N., Schiller, E., Ksentini, A. and Braun, T. (2017). Network Slices toward 5G Communications: Slicing the LTE Network. IEEE Communications Magazine, 55(8), pp.146–154.
  • Li, X., Samaka, M., Chan, H.A., Bhamare, D., Gupta, L., Guo, C. and Jain, R. (2017). Network Slicing for 5G: Challenges and Opportunities. IEEE Internet Computing, 21(5), pp.20–27.
  • Mathew, A., 2020, March. Network slicing in 5G and the security concerns. In 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC) (pp. 75-78). IEEE.
  • Subedi, P., Alsadoon, A., Prasad, P.W.C., Rehman, S., Giweli, N., Imran, M. and Arif, S. (2021). Network slicing: a next-generation 5G perspective. EURASIP Journal on Wireless Communications and Networking, 2021(1).
  • Zhang, S. (2019). An Overview of Network Slicing for 5G. IEEE Wireless Communications, [online] 26(3), pp.111–117.

About Nife - Contextual Ads at Edge

Contextual Ads at Edge are buzzing around the OTT platforms. To achieve the perfect mix of customer experience and media monetization, advertisers will need a technology framework that harnesses various aspects of 5G, such as small cells and network slicing, to deliver relevant content in real time with zero latency and lag-free advertising.

Why Contextual Ads at Edge?#

Contextual Ads at Edge

"In advertising, this surge of data will enable deeper insights into customer behaviors and motivations, allowing companies to develop targeted, hyper-personalized ads at scale — but just migrating to 5G is not enough to enable these enhancements. To achieve the perfect mix of customer experience and media monetization, advertisers will need a technology framework that harnesses various aspects of 5G, such as small cells and network slicing, to deliver relevant content in real-time with zero latency and lag-free advertising."

Contextual Video Ads Set to Gain#

A recent study shows that 86% of businesses used videos as their core marketing strategy in 2021 compared to 61% in 2016. A report by Ericsson estimates videos will account for 77% of mobile data traffic by 2025 versus 66% currently.

Read more about Contextual Ads at Edge in the article covered by Wipro.

Wipro Tech Blogs - Contextual Ads Winning in a 5G World

Condition-Based Monitoring at Edge - An Asset to Equipment Manufacturers

Large-scale manufacturing units, especially industrial setups, have complicated equipment. Condition-based monitoring at the edge is unprecedented. Can this cost be reduced?

Learn More!

Edge Computing for Condition-based monitoring

Background#

The world is leaning toward the Industrial 4.0 transformation, and so are the manufacturers. The manufacturers are moving towards providing services rather than selling one-off products. Edge computing in manufacturing is used to collect data, manage the data, and run the analytics. It becomes essential to monitor assets, check for any faults, and predict any issues with the devices. Real-time data analysis of assets detects faults so we can carry out maintenance before the failure of the system occurs. We can recognize all the faulty problems with the equipment. Hence, we need condition-based monitoring.

Why Edge Computing for Condition-Based Monitoring?#

Edge Computing for Condition-based monitoring

Edge computing is used to collect data and then label it, further manage the data, and run the system's analytics. Then, we can send alerts to the end enterprise customer and the OEM to notify them when maintenance service is required. Using network edge helps eliminate the pain of collecting data from many disparate systems or machines.

The device located close to the plants or at the edge of the network provides condition-based monitoring, preempts early detection, and correction of designs, ensuring greater productivity for the plant.

Key Challenges and Drivers of Condition-Based Monitoring at Edge#

  • Device Compatibility
  • Flexibility in Service
  • Light Device Support
  • Extractive Industries

Solution#

To detect machinery failures, the equipment has a layer of sensors. These sensors pick up the information from the devices and pass it to a central processing unit.

Here, edge computing plays a crucial part in collecting and monitoring via sensors. The data from the sensors help the OEM and the system administrators monitor the exact device conditions, reducing the load on the end device itself. This way, administrators can monitor multiple sensors together. With the generation of the events, failure on one device can be collated with another device.

Edge also allows processing regardless of where the end device is located or if the asset moves. The same application can be extended to other locations. Alternatively, using edge helps remove the pain of collecting data from many disparate systems/machines in terms of battery.

The edge computing system based on conditions is used to collect statistics, manage the data, and run the analytics without any software hindrance. A system administrator can relax as real-time data analysis detects faults to carry out maintenance before any failure occurs.

Condition-based monitoring can be used in engineering and construction to monitor the equipment. Administrators can use edge computing industrial manufacturing for alerts and analytics.

On-Prem vs. Network Edge#

Given that the on-prem edge is lightweight, it's easy to place anywhere on the location. On the other hand, installing a device is overridden if the manufacturing unit decides to go with the network edge; hence, flexibility is automatically achieved.

How Does Nife Help with Condition-Based Monitoring at Edge?#

Use Nife as a network edge device to compute and deploy applications close to the industries.

Nife works on collecting sensor information, collating it, and providing immediate response time.

Benefits and Results#

  • No difference in application performance (70% improvement from Cloud)
  • Reduce the overall price of the Robots (40% Cost Reduction)
  • Manage and monitor all applications in a single pane of glass
  • Seamlessly deploy and manage navigation functionality (5 min to deploy, 3 min to scale)

Edge computing is an asset to different industries, especially device manufacturers, helping them reduce costs, improve productivity, and ensure that administrators can predict device failures.

You might like to read through this interesting topic of Edge Gaming!

Case Study 2: Scaling Deployment of Robotics

For scaling the robots, the biggest challenge is management and deployment. Robots have brought a massive change in the present era, and so we expect them to change the next generation. While it may not be true that the next generation of robotics will do all human work, robotic solutions help with automation and productivity improvements. Learn more!

Scaling deployment of robotics

Introduction#

In the past few years, we have seen a steady increase and adoption of robots for various use-cases. When industries use robots, multiple robots perform similar tasks in the same vicinity. Typically, robots consist of embedded AI processors to ensure real-time inference, preventing lags.

Robots have become integral to production technology, manufacturing, and Industrial 4.0. These robots need to be used daily. Though embedded AI accelerates inference, high-end processors significantly increase the cost per unit. Since processing is localized, battery life per robot also reduces.

Since the robots perform similar tasks in the same vicinity, we can intelligently use a minimal architecture for each robot and connect to a central server to maximize usage. This approach aids in deploying robotics, especially for Robotics as a Service use-cases.

The new architecture significantly reduces the cost of each robot, making the technology commercially scalable.

Key Challenges and Drivers for Scaling Deployment of Robotics#

  • Reduced Backhaul
  • Mobility
  • Lightweight Devices

How and Why Can We Use Edge Computing?#

Device latency is critical for robotics applications. Any variance can hinder robot performance. Edge computing can help by reducing latency and offloading processing from the robot to edge devices.

Nife's intelligent robotics solution enables edge computing, reducing hardware costs while maintaining application performance. Edge computing also extends battery life by removing high-end local inference without compromising services.

Energy consumption is high for robotics applications that use computer vision for navigation and object recognition. Traditionally, this data cannot be processed in the cloud; hence, embedded AI processors accelerate transactions.

Virtualization and deploying the same image on multiple robots can also be optimized.

We enhance the solution's attractiveness to end-users and industries by reducing costs, offloading device computation, and improving battery life.

Solution#

Robotics solutions are valuable for IoT, agriculture, engineering and construction services, healthcare, and manufacturing sectors.

Logistics and transportation are significant areas for robotics, particularly in shipping and airport operations.

Robots have significantly impacted the current era, and edge computing further reduces hardware costs while retaining application performance.

How Does Nife Help with Deployment of Robotics?#

Use Nife to offload device computation and deploy applications close to the robots. Nife works with Computer Vision.

  • Offload local computation
  • Maintain application performance (70% improvement over cloud)
  • Reduce robot costs (40% cost reduction)
  • Manage and Monitor all applications in a single interface
  • Seamlessly deploy and manage navigation functionality (5 minutes to deploy, 3 minutes to scale)

A Real-Life Example of Edge Deployment and the Results#

Edge deployment

In this customer scenario, robots were used to pick up packages and move them to another location.

If you would like to learn more about the solution, please reach out to us!

Intelligent Edge | Edge Computing in 5G Era

AI (Artificial Intelligence) and ML (Machine Learning) are all set to become the future of technology. According to reports, AI and ML will become crucial for intelligent edge management.

Summary#

We can't imagine Intelligent Edge computing without AI and ML. If you are unaware of the enormous impact of AI and ML on Intelligent edge management, this article will help you uncover all the aspects. It will tell you how AI and ML will become the new normal for Intelligent Edge Management.

What is Intelligent Edge Computing?#

Edge Cloud computing refers to a process through which the gap between computing and network vanishes. We can provide computing at different network locations through storage and compute resources. Examples of edge computing include “on-premises at an enterprise or customer network site” or local operators like Telco.

Predictions of Edge computing:

We expect the future of edge computing to grow at a spectacular rate. Since edge computing is the foundation of the network computer fabric, experts predict a steady growth of the popularity of edge computing shortly. Adding to these predictions are the new applications like IoT, 5G, smart devices, extended reality and Industry 4.0 that will enable rapid growth of edge computing. According to a prediction by Ericsson, by 2023, almost 25% of 5G users will start using intelligent edge computing. These predictions reflect the expected growth of edge computing shortly.

Intelligent Edge computing

Challenges with Edge computing

Every coin has two sides. Similarly, if edge computing is expected to grow substantially, it will not come without common problems and challenges. The first problem is the gap between existing cloud management solutions and computing at the edge. The cloud management solutions that exist today work on large pools of homogeneous hardware, making it difficult to manage. Besides that, it requires 24/7 system administration. But if you look at the suitable environment for edge computing, you would see significant differences.

  • It has limited and constrained resources:

Unlike the existing cloud management solutions, edge computing is limited by constrained resources. This is because the location and servers are made with a small factor of rack space in mind. This might seem like an advantage because you will require less space, money, etc. But the challenge with this is that one needs to have optimum utilisation of resources to get efficient computing and storing facilities.

  • Heterogeneous hardware and dynamic factors:

The other significant difference is that, unlike the existing resources that require homogeneous hardware, edge computing requires diverse hardware. Therefore, the requirement can vary at different times. Requirements for hardware can vary according to varying factors like space, timing, the purpose of use etc. Let's look at some of the diverse factors that influence the heterogeneity and dynamics of edge computing:

  • Location: If edge computing is for a commercial area, it will get overburdened during rush hours. But in contrast, if you are using it in residential areas, the load will be after working hours because people will use it after coming home. So in this way, the location can matter a lot for edge computing.
  • Timing: There are several hours in the day when edge computing is widely used, while at some hour's its application is negligible.
  • Purpose of application: The goal of computing is to determine what kind of hardware we require for edge computing. If, for IoT, the application will need the best services. But if it is for a simple purpose like gaming, even low latency computing would work.
  • In this way, we see that edge computing has to overcome heterogeneity and diversity for optimum performance.
  • Requirement of reliability and high performance from edge computing:

The third challenge for edge computing is to remain reliable and offer high performance. There is a dire need to reduce the chances of failure that are most common in software infrastructure. Therefore, to mitigate these failures, we need timely detection and analysis and remedy for the problem. If it is not correct, it can even transfer from one system to another.

  • The problem of human intervention with remote computing:

If edge servers are in a remote area, there will be a problem with human intervention. Administrators can't visit these remote areas regularly and check on the issues. Therefore, there is a need for the part of computing to become self-managing.

Edge Computing Platform

How AI and ML are expected to become of utmost importance for edge computing?

Artificial intelligence and machine learning are expected to become crucial for computing because the distribution of computer capability and the network has several challenges in operation. Hence AI and ML can overcome these challenges. AI and ML will simplify cloud edge operations and ensure a smooth transition of edge computing.

  • AI and ML can extract knowledge from large chunks of data.
  • Decisions, predictions, and inferences reached through AI and ML are more accurate and faster at the edge.
  • By detecting data patterns through AI and ML, Edge computing can have automated operations.
  • Classification and clustering of data can help in the detection of faults and efficient working of algorithms.

How to use AI and ML for edge computing?#

Enterprises can use AI and ML in different mechanisms at edge computing locations.

Let's look at the different tools and processes involved.

  • Transfer learning (new model training from previously trained models)
  • Distributed learning
  • Federated learning
  • Reinforcement learning
  • Data monitoring and management
  • Intelligent operations.

Conclusion#

We can expect extended artificial intelligence and machine learning on edge to become a new normal. It will affect almost all technological tools, including edge computing. In this article, we looked at how artificial intelligence and machine learning would help edge computing in the future to overcome its challenges. But it will always remain essential to have a robust framework for technological tools not to be misused.