6 posts tagged with "cloud native development"

View All Tags

How To Implement Containerization In Container Orchestration With Docker And Kubernetes

Kubernetes and Docker are important implementations in container orchestration.

Kubernetes is an open-source orchestration system that has recently gained popularity among IT operations teams and developers. Its primary functions include automating the administration of containers and their placement, scaling, and routing. Google first created it, and in 2014, Google gave it to Open Source. Since then, the Cloud Native Computing Foundation has been responsible for its maintenance. Kubernetes is surrounded by an active community and ecosystem that is now in the process of development. This community has thousands of contributors and dozens of certified partners.

What are containers, and what do they do with Kubernetes and Docker?#

Containers provide a solution to an important problem that arises throughout application development. When developers work on a piece of code in their local development environment, they are said to be "writing code." The moment they are ready to deploy that code into production is when they run into issues. The code, which functioned well on their system, cannot be replicated in production. Several distinct factors are at play here, including different operating systems, dependencies, and libraries.

Multiple containers overcame this fundamental portability problem by separating the code from the underlying infrastructure it was executing on. This allowed for more flexibility. The developers might bundle up the program and all the bins and libraries required to operate properly and store them in a compact container image. The container may be executed in production on any machine equipped with a containerization platform.

Docker In Action#

Docker makes life a lot simpler for software developers by assisting them in running their programs in a similar environment without any complications, such as OS difficulties or dependencies because a Docker container gives its OS libraries. Before the advent of Docker, a developer would submit code to a tester; but due to a variety of dependency difficulties, the code often failed to run on the tester's system, despite running without any problems on the developer's machine.

Because the developer and the tester now share the same system operating on a Docker container, there is no longer any pandemonium. Both of them can execute the application in the Docker environment without any challenges or variations in the dependencies that they need.

Build and Deploy Containers With Docker#

Docker is a tool that assists developers in creating and deploying applications inside containers. This program is free for download and can be used to "Build, Ship, and Run apps, Anywhere."

Docker enables users to generate a special file called a Dockerfile. The Dockerfile file will then outline a build procedure, creating an immutable image when given to the 'docker build' command. Consider the Docker image a snapshot of the program with all its prerequisites and dependencies. When a user wishes to start the process, they will use the 'docker run' command to launch it in any environment where the Docker daemon is supported and active.

Docker also has a cloud repository hosted in the cloud called Docker Hub. Docker Hub may act as a registry for you, allowing you to store and share the container images that you have built.

Implementing containerization in container orchestration with Docker and Kubernetes#

Kubernetes and docker

The following is a list of the actions that may be taken to implement containerization as well as container orchestration using Docker and Kubernetes:

1. Install Docker#

Docker must initially be installed on the host system as the first step in the process. Containers may be created using Docker, deployed with Docker, and operated with Docker. Docker containers can only be constructed and operated using the Docker engine.

2. Create a Docker image#

Create a Docker image for your application after Docker has been successfully installed. The Dockerfile lays out the steps that must be taken to generate the image.

3. Build the Docker image#

To create the Docker image, you should use the Docker engine. The program and all of its prerequisites are included in the picture file.

4. Push the Docker image to a registry#

Publish the Docker image to a Docker registry, such as Docker Hub, which serves as a repository for Docker images and also allows for their distribution.

By Kubernetes#

1. Install Kubernetes#

The installation of Kubernetes on the host system is the next step to take. Containers may be managed and orchestrated with the help of Kubernetes.

2. Create a Kubernetes cluster#

Create a group of nodes to work together using Kubernetes. A collection of nodes that collaborate to execute software programs is known as a cluster.

3. Create Kubernetes objects#

To manage and execute the containers, you must create Kubernetes objects such as pods, services, and deployments.

4. Deploy the Docker image#

When deploying the Docker image to the cluster, Kubernetes should be used. Kubernetes is responsible for managing the application's deployment and scalability.

5. Scale the application#

Make it as large or as small as necessary using Kubernetes.

To implement containerization and container orchestration using Docker and Kubernetes, the process begins with creating a Docker image, then pushing that image to a registry, creating a Kubernetes cluster, and finally, deploying the Docker image to the cluster using Kubernetes.

Kubernetes vs. Docker: Advantages of Docker Containers#

Kubernetes and docker containers

Managing containers and container platforms provide various benefits over conventional virtualization, in addition to resolving the primary problem of portability, which was one of the key challenges.

Containers have very little environmental impact. The application and a specification of all the binaries and libraries necessary for the container to execute are all needed. Container isolation is performed on the kernel level, eliminating the need for a separate guest operating system. This contrasts virtual machines (VMs), each with a copy of a guest operating system. Because libraries may exist across containers, storing 10 copies of the same library on a server is no longer required, reducing the required space.

Conclusion#

Kubernetes has been rapidly adopted in the cloud computing industry, which is expected to continue in the foreseeable future. Containers as a service (CaaS) and platform as a service (PaaS) are two business models companies such as IBM, Amazon, Microsoft, Google, and Red Hat use to market their managed Kubernetes offerings. Kubernetes is already being used in production on a vast scale by some enterprises throughout the globe. Docker is another incredible combination of software and hardware. Docker is leading the container category, as stated in the "RightScale 2019 State of the Cloud Report," due to its huge surge in adoption from the previous year.

How does cloud computing affect budget predictability for CIOs?

Cloud computing companies may assist IT executives in laying the groundwork for success, such as increasing deployment speed and assuring future flexibility. However, the landscape is complicated. While technology is rapidly changing the corporate landscape, technology investment procedures have not always kept up. Let's look at how cloud computing may affect CIO budget predictability.

Cloud computing companies

Role of CIOs in Cloud Budget Predictability#

CIOs will need to remain up to date on the newest innovations to make the best decisions on behalf of their businesses to drive their digital transformation. Because of the cloud's influence, as well as the DevOps movement, software development and IT operations have been merged and simplified. As infrastructure and applications are no longer independent, the CIO is no longer required to manage manual IT chores [(Makhlouf, 2020)]. Cost-effectiveness and efficiency must be prioritised in their strategy to save cloud budgets, which will bring a new dimension to their conventional job inside a company.

CIOs must also become more adaptable and agile. There are now so many distinct cloud providers that enterprises must employ a multi-access edge computing-cloud approach.

This implies:

  • Businesses will be free to select cloud solutions based on their merits rather than being dependent on a single source.
  • The CIO will be in charge of expanding a multi-access edge computing-cloud strategy, which means they must think about things like security, service integration, and cost.

Cloud computing companies will increasingly rely on their CIO to develop useful solutions to support digital transformation as cloud computing platforms evolve. As demand grows more than ever, businesses will have a broader selection of cloud-based solutions to choose from. As a result, the CIO's function will be expanded to include both technical expertise and business-oriented strategic thinking.

cloud computing technology

CIOs Perspective: From Cost to Investment#

CIOs have long struggled with the impression of IT as a cost centre. The convergence of technology and business strategy might provide CIOs with the chance to abandon a cost-cutting attitude in favour of an investment philosophy that values strategic expenditure to boost revenue, growth, stock price, or other measures of company and shareholder value.

As the technology function assumes a more prominent role, CIOs may need to address critical issues such as core modernization, cloud business models, investment governance and value measurement, the incompatibility of fixed budgets with Agile development, and the impact of automation on the workforce to save cloud budgets [(Liu et al., 2020)].

Cloud Computing Affecting Core Modernization#

Many CIOs acknowledge that old core systems lack the agility required to build and scale creative and disruptive new technology solutions. Legacy systems can be rehosted, re-platformed, rearchitected, rebuilt, or replaced—strategies that vary in impact, cost, risk, and value. However, core modernization should be considered as a technological investment with other options. A big distribution company's CIO opted to postpone a modernization initiative and shift funding to a bespoke warehouse management program that provided the firm with a competitive edge.

multi-access-edge-computing

Cloud Business Models on OPEX/CAPEX#

Cloud computing companies have welcomed cloud solutions with open arms, drawn by their ease of use and deployment. Cloud computing platforms may foster innovation and encourage experimentation by removing the burden of purchasing and maintaining technological infrastructure [(Kholidy, 2020)]. However, every investment involves risks, and cloud computing platforms are no exception. Because the cloud switches technology spending from the capital expense column to the operating expense column, rushing to the cloud might have a significant impact on firm financials. Finance and IT divisions may collaborate to properly identify these expenses and analyze and maximize the impact to save cloud budgets.

Cloud computing platforms

Governance and Value Assessment#

Technology leaders may improve their capacity to create convincing business cases that properly anticipate technology project ROI and assess the performance and value of each investment [(Liu et al., 2018)]. It can be beneficial to have a specialized financial team responsible for modeling, administering, and analyzing the value of IT investments to save cloud budgets.

Taking such actions can help decrease the notion that technology is an incomprehensible black box, make it simpler for technology executives to justify spending, and help them create closer connections with CFOs.

Incompatibility of Fixed Budgets#

Agile and other flexible delivery techniques are on the increase. CIOs may manage investment portfolios in the same way that venture capitalists do, but only if financing mechanisms are changed to favor Agile, product-focused settings. A flexible budgeting methodology may provide product teams with the necessary creativity and responsibility to achieve business value and save cloud budgets.

Automation Impact#

Automation and robotics' ability to streamline and accelerate IT delivery is changing the way technology and cloud computing companies work, collaborate, and create value [(Raj and Raman, 2018)]. Better workflows and various resource needs might drive increased production output and save cloud budgets as automation enables teams to exchange manual and repetitive jobs for those requiring higher-order abilities.

The Advantages of Cloud Development : Cloud Native Development

Are you curious about cloud development? You've come to the perfect location for answers.

In this Blog, we will discuss what is Cloud Development, Cloud Native Development, Cloud Native Application Development, Cloud Application Development, and Cloud Application Development Services. Let's get started.

Cloud application development

What is Cloud Development?#

Cloud development is the process of creating, testing, delivering, and operating software services on the cloud. Cloud software refers to programmes developed in a cloud environment. Cloud development is often referred to as cloud-based or in-cloud development. Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform, and others are well-known Cloud application development services. The widespread use of cloud services by businesses has resulted in numerous forms of cloud development based on their commercial viability.

Businesses can incorporate the most recent cloud technologies into their web apps and other Cloud application development services by utilising cloud such as multiple remote data centres, development tools, operating systems, and so on via a cloud platform as a service, software as a service, or infrastructure as a service. The Cloud application development services are based on speed, security, and resource and infrastructure flexibility. For business-driving results, cloud application development services employ cutting-edge technology and the finest of all private, public, and hybrid cloud services. Cloud application development services offer a high level of security and risk management.

Cloud Application Development#

Cloud application development is the process of creating a Cloud-based programme. It entails many stages of software development, each of which prepares your programme for launch and market acceptance. DevOps approaches and tools such as Kubernetes are used by the finest Cloud application development teams. When utilised effectively with software development processes, cloud application development on cloud infrastructure allows web and PWA development services to cut development costs, open up the potential of working with remote teams, and shorten project timeframes.

Cloud application development

What is Cloud Native Development?#

Cloud Native development is designed to work seamlessly in the cloud. Developers create the architecture of Cloud Native application development from the start or heavily restructure existing code to function on the cloud utilising cloud-based technologies [(Gilbert, 2018)]. Developers can continually and effectively deploy new software services. Cloud Native Development includes features such as continuous integration/continuous development, containers, microservices, and so on.

Cloud Native Development is centred on breaking down large software programmes into smaller services that may be utilised wherever they are needed. This guarantees that Cloud Native application development is accessible, scalable, and flexible. Microservices, cloud platforms, containers, Kubernetes, immutable infrastructure, declarative APIs, and continuous delivery technologies are commonly used in Cloud Native application development, along with approaches such as DevOps and agile methodology.

Cloud-enabled Development#

The movement of traditional software to the cloud platform is known as cloud-enabled development. Cloud-enabled apps are created in a monolithic approach on on-premises hardware and resources. Cloud-enabled programmes are unable to achieve the optimum scalability and resource sharing that cloud applications provide.

Cloud-based Development#

Cloud-native application development is balanced with cloud-based software development. They provide the availability and scalability of cloud services without needing major application changes. This cloud development strategy enables enterprises to use cloud benefits in certain of their services without having to change the entire software application code.

Cloud Native development

What distinguishes cloud application development from traditional app development?#

Historically, software engineers would create software applications on local workstations before deploying them to the production environment. This technique increases the likelihood of software products not functioning as intended, as well as other compatibility difficulties.

Today, developers utilise agile and DevOps software development approaches, which allow for improved collaboration among development team members, allowing them to generate products effectively and follow user market expectations [(Fylaktopoulos et al., 2016)]. Cloud application development services such as Google App Engine, code repositories such as GitHub, and so on enable developers to test, restructure, and enhance codebases in a collaborative environment before immediately deploying them to the production environment.

The Advantages of Cloud Development#

Among the many advantages are:

  • Cloud developers may automate several developments and testing activities.
  • A cloud developer may quickly rework and enhance code without interfering with the production environment. It makes the development process more agile [(Odun-Ayo, Odede and Ahuja, 2018)].
  • Containers and microservices enable cloud developers to create more scalable software solutions.
  • DevOps development methodologies enable cloud app developers, IT employees, and clients to continually enhance the software product.
  • When compared to on-premises software development, the entire process is more cost-effective, efficient, and secure.
cloud technology
Conclusion#

The cloud computing business is massive and likely to explode in the coming years. The reason for this is the cost-effectiveness, scalability, and flexibility it brings to business processes and products, especially for small and medium-sized enterprises. A cloud-native, cloud-based, or cloud-enabled development requires a capable team of software developers that understand cloud migration and integrate best practices.

The Advantages of Cloud Development : Cloud Native Development

Are you curious about cloud development? You've come to the perfect location for answers.

In this Blog, we will discuss what is Cloud Development, Cloud Native Development, Cloud Native Application Development, Cloud Application Development, and Cloud Application Development Services. Let's get started.

Cloud application development

What is Cloud Development?#

Cloud development is the process of creating, testing, delivering, and operating software services on the cloud. Cloud software refers to programmes developed in a cloud environment. Cloud development is often referred to as cloud-based or in-cloud development. Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform, and others are well-known Cloud application development services. The widespread use of cloud services by businesses has resulted in numerous forms of cloud development based on their commercial viability.

Businesses can incorporate the most recent cloud technologies into their web apps and other Cloud application development services by utilising cloud such as multiple remote data centres, development tools, operating systems, and so on via a cloud platform as a service, software as a service, or infrastructure as a service. The Cloud application development services are based on speed, security, and resource and infrastructure flexibility. For business-driving results, cloud application development services employ cutting-edge technology and the finest of all private, public, and hybrid cloud services. Cloud application development services offer a high level of security and risk management.

Cloud Application Development#

Cloud application development is the process of creating a Cloud-based programme. It entails many stages of software development, each of which prepares your programme for launch and market acceptance. DevOps approaches and tools such as Kubernetes are used by the finest Cloud application development teams. When utilised effectively with software development processes, cloud application development on cloud infrastructure allows web and PWA development services to cut development costs, open up the potential of working with remote teams, and shorten project timeframes.

Cloud application development

What is Cloud Native Development?#

Cloud Native development is designed to work seamlessly in the cloud. Developers create the architecture of Cloud Native application development from the start or heavily restructure existing code to function on the cloud utilising cloud-based technologies [(Gilbert, 2018)]. Developers can continually and effectively deploy new software services. Cloud Native Development includes features such as continuous integration/continuous development, containers, microservices, and so on.

Cloud Native Development is centred on breaking down large software programmes into smaller services that may be utilised wherever they are needed. This guarantees that Cloud Native application development is accessible, scalable, and flexible. Microservices, cloud platforms, containers, Kubernetes, immutable infrastructure, declarative APIs, and continuous delivery technologies are commonly used in Cloud Native application development, along with approaches such as DevOps and agile methodology.

Cloud-enabled Development#

The movement of traditional software to the cloud platform is known as cloud-enabled development. Cloud-enabled apps are created in a monolithic approach on on-premises hardware and resources. Cloud-enabled programmes are unable to achieve the optimum scalability and resource sharing that cloud applications provide.

Cloud-based Development#

Cloud-native application development is balanced with cloud-based software development. They provide the availability and scalability of cloud services without needing major application changes. This cloud development strategy enables enterprises to use cloud benefits in certain of their services without having to change the entire software application code.

Cloud Native development

What distinguishes cloud application development from traditional app development?#

Historically, software engineers would create software applications on local workstations before deploying them to the production environment. This technique increases the likelihood of software products not functioning as intended, as well as other compatibility difficulties.

Today, developers utilise agile and DevOps software development approaches, which allow for improved collaboration among development team members, allowing them to generate products effectively and follow user market expectations [(Fylaktopoulos et al., 2016)]. Cloud application development services such as Google App Engine, code repositories such as GitHub, and so on enable developers to test, restructure, and enhance codebases in a collaborative environment before immediately deploying them to the production environment.

The Advantages of Cloud Development#

Among the many advantages are:

  • Cloud developers may automate several developments and testing activities.
  • A cloud developer may quickly rework and enhance code without interfering with the production environment. It makes the development process more agile [(Odun-Ayo, Odede and Ahuja, 2018)].
  • Containers and microservices enable cloud developers to create more scalable software solutions.
  • DevOps development methodologies enable cloud app developers, IT employees, and clients to continually enhance the software product.
  • When compared to on-premises software development, the entire process is more cost-effective, efficient, and secure.
cloud technology
Conclusion#

The cloud computing business is massive and likely to explode in the coming years. The reason for this is the cost-effectiveness, scalability, and flexibility it brings to business processes and products, especially for small and medium-sized enterprises. A cloud-native, cloud-based, or cloud-enabled development requires a capable team of software developers that understand cloud migration and integrate best practices.

What is the Principle of DevOps?

There are several definitions of DevOps, and many of them sufficiently explain one or more characteristics that are critical to finding flow in the delivery of IT services. Instead of attempting to provide a complete description, we want to emphasize DevOps principles that we believe are vital when adopting or shifting to a DevOps method of working.

devops as a service

What is DevOps?#

DevOps is a software development culture that integrates development, operations, and quality assurance into a continuous set of tasks (Leite et al., 2020). It is a logical extension of the Agile technique, facilitating cross-functional communication, end-to-end responsibility, and cooperation. Technical innovation is not required for the transition to DevOps as a service.

Principles of DevOps#

DevOps is a concept or mentality that includes teamwork, communication, sharing, transparency, and a holistic approach to software development. DevOps is based on a diverse range of methods and methodologies. They ensure that high-quality software is delivered on schedule. DevOps principles govern the service providers such as AWS Direct DevOps, Google Cloud DevOps, and Microsoft Azure DevOps ecosystems.

DevOps principles

Principle 1 - Customer-Centric Action#

Short feedback loops with real consumers and end users are essential nowadays, and all activity in developing IT goods and services revolves around these clients.

To fulfill these consumers' needs, DevOps as a service must have : - the courage to operate as lean startups that continuously innovate, - pivot when an individual strategy is not working - consistently invest in products and services that will provide the highest degree of customer happiness.

AWS Direct DevOps, Google Cloud DevOps, and Microsoft Azure DevOps are customer-oriented DevOps.

Principle 2 - Create with the End in Mind.#

Organizations must abandon waterfall and process-oriented models in which each unit or employee is responsible exclusively for a certain role/function and is not responsible for the overall picture. They must operate as product firms, with an explicit focus on developing functional goods that are sold to real consumers, and all workers must share the engineering mentality necessary to imagine and realise those things (Erich, Amrit and Daneva, 2017).

Principle 3 - End-to-end Responsibility#

Whereas conventional firms build IT solutions and then pass them on to Operations to install and maintain, teams in a DevOps as a service are vertically structured and entirely accountable from idea to the grave. These stable organizations retain accountability for the IT products or services generated and provided by these teams. These teams also give performance support until the items reach end-of-life, which increases the sense of responsibility and the quality of the products designed.

Principle 4 - Autonomous Cross-Functional Teams#

Vertical, fully accountable teams in product organizations must be completely autonomous throughout the whole lifecycle. This necessitates a diverse range of abilities and emphasizes the need for team members with T-shaped all-around profiles rather than old-school IT experts who are exclusively informed or proficient in, say, testing, requirements analysis, or coding. These teams become a breeding ground for personal development and progress (Jabbari et al., 2018).

Principle 5 - Continuous Improvement#

End-to-end accountability also implies that enterprises must constantly adapt to changing conditions. A major emphasis is placed on continuous improvement in DevOps as a service to eliminate waste, optimize for speed, affordability, and simplicity of delivery, and continually enhance the products/services delivered. Experimentation is thus a vital activity to incorporate and build a method of learning from failures. In this regard, a good motto to live by is "If it hurts, do it more often."

Principle 6 - Automate everything you can#

Many firms must minimize waste to implement a continuous improvement culture with high cycle rates and to develop an IT department that receives fast input from end users or consumers. Consider automating not only the process of software development, but also the entire infrastructure landscape by constructing next-generation container-based cloud platforms like AWS Direct DevOps, Google Cloud DevOps, and Microsoft Azure DevOps that enable infrastructure to be versioned and treated as code (Senapathi, Buchan and Osman, 2018). Automation is connected with the desire to reinvent how the team provides its services.

devops as a service

Remember that a DevOps Culture Change necessitates a Unified Team.#

DevOps is just another buzzword unless key concepts at the foundation of DevOps are properly implemented. DevOps concentrates on certain technologies that assist teams in completing tasks. DevOps, on the other hand, is first and foremost a culture. Building a DevOps culture necessitates collaboration throughout a company, from development and operations to stakeholders and management. That is what distinguishes DevOps from other development strategies.

Remember that these concepts are not fixed in stone while shifting to DevOps as a service. DevOps Principles should be used by AWS Direct DevOps, Google Cloud DevOps, and Microsoft Azure DevOps according to their goals, processes, resources, and team skill sets.

Real-time Application Monitoring

The supply of continually updated information streaming at zero or low latency is referred to as real-time (data) monitoring [(Fatemi Moghaddam et al., 2015)]. IT monitoring entails routinely gathering data from all areas of an organization's IT system, such as on hardware, virtualized environments, networking, and security settings, as well as the application stack, including cloud-based applications, and software user interfaces in cloud computing companies. IT employees use this data to assess system performance, identify abnormalities, and fix issues. Real-time application monitoring raises the stakes by delivering a continuous low-latency stream of relevant and current data from which administrators may quickly spot major issues. Alerts can be delivered more rapidly to suitable personnel – or even to automated systems – for remediation. Cloud computing companies can disclose and forecast trends and performance by recording real-time monitoring data over time.

Real-time Application Monitoring

Nife Cloud Computing & Cloud-Native Development#

Nife is a serverless platform for developers that allows enterprises to efficiently manage, launch, and scale applications internationally. It runs your apps near your users and grows to compute in cities where your programme is most often used. Traditionally, programmes are placed on the cloud computing companies which are located far away from the end-user. When data moves between regions and places, it creates computational issues such as bandwidth, cost, and performance, to mention a few.

Nife architecture#

Cloud is constructed in the style of a Lego set. To build a multi-region architecture for your applications across constrained cloud regions, you must first understand each component: network, infrastructure, capacity, and computing resources [(Odun-Ayo et al., 2018)]. Manage and monitor the infrastructure as well. This still does not affect application performance.

Nife PaaS Platform enables you to deploy various types of services near the end-user, such as entire web apps, APIs, and event-driven serverless operations, without worrying about the underlying infrastructure. Nife includes rapid, continuous deployments as well as an integrated versioning mechanism for managing applications. To allow your apps to migrate across infrastructure globally, you may deploy normal Docker containers or plug your code straight from your git repositories. Applications may be deployed in many places spanning North America, Latin America, Europe, and the Asia Pacific. The Nife edge network includes an intelligent load balancer and geo-routing based on rules.

Cloud Computing platform

Nife Instantly deploy all applications

To install any application quickly and easily everywhere, NIFE provides on-demand infrastructure from a wide range of worldwide suppliers.

  • Nife deploy your application in seconds by using Docker images or by connecting your git repository and simply deploying.
  • Run internationally with a single click - Depending on your requirements, you may run your apps in any or all of our locations. With 500 Cloud, Edge, and Telco sites, you can go worldwide.
  • Seamless auto-scaling- Any region, any position at the nearest endpoint at your fingertips [(Diaby and Bashari, 2017)].
  • Anything may be run - NIFE are ready to power Telco Orchestration demands from MEC to MANO to ORAN beyond the edge cloud using Containers, Functions, and MicroVMs!

Nife's Edge Ecosystem

It is critical to stay current with the ecosystem to have a resilient, intelligent global infrastructure [(Kaur et al., 2020)]. NIFE collaborate with various cloud computing companies' supporters to establish an edge ecosystem, whether it be software, hardware, or the network.

  • Flexible - Customers of NIFE have access to infrastructure distributions worldwide, in every corner and area, thanks to the Public Edge. NIFE can reach Billions of users and Trillions of devices using these.
  • Unified - Nife's Global Public Edge is a network of edge computing resources that support numerous environments that are globally spread and deployable locally.
  • Widely dispersed - Developers may distribute workloads to resources from public clouds, mobile networks, and other infrastructures via a single aggregated access.

How does Nife's real-time application monitoring function?#

Nife's real-time monitoring conveys an IT environment's active and continuing condition. It may be configured to focus on certain IT assets at the required granularity.

The following are examples of real-time data: CPU and memory usage; application response time; service availability; network latency; web server requests; and transaction times are all factors to consider.

Real-time application monitoring tools, in general, shows pertinent data on customised dashboards. Data packet categories and formats can be shown as numerical line graphs, bar graphs, pie charts, or percentages by admins. The data displays can be adjusted based on priorities and administrative choices.

The Nife's Real-Time Monitoring and Benefits of Cloud Computing#

Collecting real-time monitoring data allows IT administrators to analyse and respond to current occurrences in the IT environment in real time. Furthermore, cloud computing companies may store and analyse real-time data over time to uncover patterns and better notice irregularities that fall outside of the predefined system and application behaviour limits. This is referred to as trend monitoring and it's among the best benefits of cloud computing.

Reactive monitoring vs. proactive monitoring: Reactive monitoring has long been used in cloud computing companies and data centres as a troubleshooting tool [(Poniszewska-Maranda et al., 2019)]. The name of this technique reveals its distinguishing feature: It responds to triggers that indicate the occurrence of an event.