6 posts tagged with "iot"

View All Tags

Benefits of 5G For Business in App Development

Introduction#

5G in app development will foster an era not only of high-speed internet networks but will also open up various avenues of application development beyond imagination.

5G For Business

In recent decades, technology has evolved radically, especially in the telecommunication sector. The demand for a fast connection, easy accessibility, and reliability of a wireless network has led us to the development of 5G technology.

Two decades ago, the only way to communicate was through a cell phone or email. But now, technological advancements have provided us with the ability to communicate in a thousand different ways.

According to a survey, by the year 2027, the number of subscriptions for 5G will reach 4.39 billion. There is no doubt that in the near future, 5G will capture the mobile market. The release of 5G will not only affect consumers but also greatly impact the Mobile App Development business.

The release of 5G will provide a ground zero for Mobile App Development businesses to experiment and create new applications to enhance user experience. Read the full article to know more about 5G and how it will benefit App Development Businesses.

5G Explained#

5G is the Fifth Generation of mobile technology after 4G. 5G offers great advancements including high speed, easy connectivity, and many others. It will provide users with the opportunity to transfer large chunks of data in seconds.

5G will have a speed almost 10 times faster than 4G. It provides data transfer speeds up to 10Gbps, whereas 4G only provides data transfer speeds up to several hundred Mbps. This technology will open new gates for business in app development.

With this technology, user experience will enhance greatly, providing a fast and reliable network. New applications will emerge that will help solve daily problems more efficiently.

Features of 5G#

To understand the benefits of 5G in App Development, one must understand its features first. Here are some of the amazing features of 5G technology:

Increased Speed#

5G provides an amazing speed of 10Gbps. This speed is the highest anyone has ever used till now. It is 100 times faster than current speeds. This speed will help users download a large amount of data in a couple of seconds.

5G will change the world completely with all of its amazing features. This fast speed, when combined with emergency systems like car boxes or other devices, will also save lives.

Low Latency#

5G provides users with a low latency feature that ensures a lag-free experience. 5G reduces the possibility of any delay to help users perform real-time tasks with ease. This feature will help users perform any online task without network interference, such as taking an online test or having an online meeting.

Improved Connectivity#

4G is not capable of handling connectivity with the current population growth. It only has the capability of handling several thousand devices in the same area. 5G is way ahead in connectivity.

It has the capability of handling millions of devices in the same area without any network interference.

Wide Bandwidth#

5G provides the opportunity to transfer data over a variety of frequencies. Users will be able to use all spectrums including low band, high bands, and mid bands to increase efficiency.

Benefits of 5G in App Development#

5G in App Development

Implementation of IoT#

With the seamless connectivity of 5G, it will be easier to share data across devices. This will provide an opportunity for developers to create more applications around IoT. Large chunks of data will be shared easily to help create a perfect IoT environment.

With 5G, these devices will be able to run more efficiently, consuming less power and working on a range of bandwidths.

Media-Rich Experience#

5G is expected to provide a rich experience in all kinds of media (audio, video, picture, etc.). With its high speed and low latency, users will be able to enjoy a delay-free experience at a much higher speed. Videos in 4K will be watched without any lag.

Video calling will offer a different experience with 5G. Users will be able to enjoy long-distance, lag-free video calls for hours. Developers will be able to incorporate high-quality videos to showcase features to their users.

Incorporation of AR and VR#

AR and VR services in an application work by connecting to a server online and processing available data online to give users results. However, 4G does not provide enough speed to process that much data on online servers for AR and VR.

With the amazing features of 5G, such as high speed and low latency, developers will be able to correctly incorporate AR and VR technologies into their applications. With innovative 5G technology, data will be processed on the server in seconds, allowing users to enjoy these technologies from anywhere.

Improved GPS Accuracy#

GPS-based app development will assure accuracy. With the current 4G network, information exchange is limited and slow. But with the wide connectivity and high-speed features of 5G, GPS-based app development will assure 100% accurate GPS results.

These results will be used by EVs (Electric Vehicles) to improve their efficiency.

Smart City Apps#

With new 5G technology, smart cities will be built. Millions of devices will be interconnected, and data will be shared across devices. All of this will be possible through the connectivity and speed of 5G. This will create an opportunity for app developers to create thousands of apps to share and process different kinds of data.

This data sharing in smart cities will help authorities save lives by preventing accidents, solving crimes, and more.

Conclusion#

New technology is knocking on the door. Soon, 5G technology will take over the world just like 4G. With this technology change, a demand for applications will be created in the market. 4G will not be able to meet these new consumer demands. At that time, businesses in app development will thrive. Every day, a new application will be released to improve the user experience.

5G, with its high speed, connectivity, and low latency, will revolutionize the world. Big data chunks will be transferred in seconds. Streaming will be smoother than ever. New technologies will be incorporated into your smartphones, leading to a significant technology shift.

Here's the video format for this article: https://www.youtube.com/watch?v=UzhqBWTOzaI

Transformation of Edge | Cloud Computing Companies

Introduction#

edge computing for businesses

Organizations are constantly concentrating on lowering network latency and computing delay duration, as well as the volume of data communicated or maintained in the server. Organizations recognise the need to modify their processing practices and are adopting Edge Computing to speed their Digitalization activities [(Dokuchaev, 2020)]. The job of digital transformation is primarily reliant on data processing. However, to make substantial modifications, organisations must frequently make major changes as far as how data is being collected, handled, and analysed. As organizational edge computing apps acquire traction, it is increasingly evident how much they will interact with digitalization programmes. Edge computing might be the connection that amplifies prospective corporate goals in the form of different continuous innovations, such as deep learning or the Internet of things.

Traditional cloud Vs. Edge Computing#

The traditional cloud-based model relies on a centralized database, where data is obtained on the periphery and then transported to the main data centres for analysis. Edge computing negates such a need to send raw information to the central network infrastructure. It implements a decentralized IT infrastructure in which data is processed near the edge, in which it is created and absorbed and it also empowers more instantaneous impact of analysis tools and AI functionality.

Edge Computing's Role in Digital Transformation

Edge Computing's role in Digital Business transformation could indeed allow rapid, less constrictive data processing, allowing for additional insight, quicker reaction times, and enhanced client interactions. Edge and AI-powered products and AI can instantly comprehend, understand, and make decisions and Data processes. Edge Computing on Internet of things devices can significantly decrease delay, boost performance, and enable enhanced decisions, laying the groundwork for simplified IT facilities. Furthermore, the coming of 5G technology, paired with both the potential of Edge Computing and IoT, has the potential to provide endless future opportunities.

Edge Computing's Digital Transformation across various business#

Manufacturing & Operations

Edge computing enables improved preventative analysis, improves efficiency, and energy usage, and improves dependability and effective availability in industrial enterprises [(Albukhitan, 2020)]. Edge Computing may assist businesses in making quicker and more effective marketing choices about their operational functions. Edge computing may be extremely advantageous for manufacturers engaged in places with limited or non-existent broadband.

Distribution Network

Distribution Network in Edge computing

A lot of things happen along the distribution chain's edge, and a much may go incorrect. Businesses may extend the accessibility and exposure of their distribution networks by separating activities into groups of lesser, relatively controllable activities by digitally linking and managing the operations at the edge. The information gained from the edges of distribution networks, supported by AI and computerized technologies, would assist businesses to efficiently respond to market circumstances, foresee lengthy patterns ahead of their rivals, and adapt plans at the moment down to its regional scale [(Ganapathy, 2021)].

Workplace security#

Edge computing has the potential to improve safety regulations across enterprises. The said Edge technology could indeed integrate and interpret information from on-site camera systems, worker security devices, and numerous other detectors to assist businesses in keeping tabs on employment conditions or make sure that all staff have significant compliance safety procedures, particularly when a place of work is distant or exceptionally risky [(Atieh, 2021)].

Autonomous Vehicles#

To function properly, autonomous cars will have to collect and evaluate massive volumes of data about their settings, routes, weather patterns, communicating with several other on-road automobiles, and so forth [(Liu et al., 2019)]. Edge Computing will allow self-driving cars to gather, analyse, and distribute information in real-time across automobiles and larger networks.

Retail#

Edge Computing may assist retail enterprises in maximising the usage of IoT devices and transmitting a multitude of data in real-time including monitoring, inventory management, retail sales, and so on [(Ganapathy, 2021)]. This innovation may be used to fuel Artificial intelligence and machine learning technologies, and also uncover commercial possibilities such as an efficient endcap or promotion, anticipate sales, optimise supplier procurement, and so forth.

Healthcare#

The healthcare business has seen an exponential increase in the amount of client data collected by gadgets, monitors, as well as other medical devices. Edge Computing enables organisations to gain access to data, particularly issue data, so that professionals may take quick action to assist patients to prevent health crises instantaneously (Hartmann, Hashmi and Imran, 2019).

Conclusion#

Since Edge Computing has yet to see widespread acceptance, the potential of this digitalization cannot be underestimated. Edge Computing, being the most practical infrastructure for placing computing infrastructure directly to the data source, may help organisations accelerate their Digital Transformation emphasis. The edge technology's importance will be seen broadly soon because it can successfully handle developing network difficulties connected with transporting massive amounts of data that enterprises create and consume today. It is no longer only an issue of quantity, but also of latencies because apps rely on analysis and reactions that are more time-sensitive.

5G in Healthcare Technology | Nife Cloud Computing Platform

Introduction#

In the field of healthcare technology, we are at the start of a high-tech era. AI technology, cloud-based services, the Internet of Things, and big data have all become popular topics of conversation among healthcare professionals as a way to provide high-quality services to patients while cutting costs. Due to ambitions for global application, the fifth generation of cellular technology, or 5G, has gotten a lot of interest. While the majority of media attention has centered on the promise of "the internet of things," the ramifications of 5G-enabled technologies in health care are yet to be addressed (Zhang and Pickwell-Macpherson, 2019). The adoption of 5G in healthcare is one of the elements that is expected to have a significant impact on patient value. 5G, or fifth-generation wireless communications, would not only provide much more capacity but also be extremely responsive owing to its low latency. 5G opens up a slew of possibilities for healthcare, including remote diagnostics, surgery, real-time surveillance, and extended telemedicine (Thayananthan, 2019). This article examines the influence of 5G technology on healthcare delivery and quality, as well as possible areas of concern with this latest tech.

cloud gaming services

What is 5G?#

The fifth generation of wireless communication technology is known as 5G. Like the preceding fourth generation, the core focus of 5G is speed. Every successive generation of wireless networks improves on the previous one in terms of speed and capability. 5G networks can deliver data at speeds of up to 10 terabytes per second. Similarly, while older networks generally have a delay of 50 milliseconds, 5G networks have a latency of 1–3 milliseconds. With super-fast connection, ultra-low latency, and extensive coverage, 5G marks yet another step ahead (Carlson, 2020). From 2021 to 2026, the worldwide 5G technology market is predicted to grow at a CAGR of 122.3 percent, reaching $667.90 billion. These distinguishing characteristics of 5G enable the possible change in health care as outlined below.

5G's Importance in Healthcare#

Patient value has been steadily declining, resulting in rising healthcare spending. In addition, there is rising concern over medical resource imbalances, ineffective healthcare management, and uncomfortable medical encounters. To address these issues, technologies such as the Internet of Things (IoT), cloud technology, advanced analytics, and artificial intelligence are being developed to enhance customer care and healthcare efficiency while lowering total healthcare costs (Li, 2019). The healthcare business is likely to see the largest improvements as a result of 5G's large bandwidth, reduced latency, and low-power-low-cost. Healthcare professionals investigated and developed several connected-care use cases, but widespread adoption was hampered by the limits of available telecommunications. High-speed and dependable connections will be critical as healthcare systems migrate to a cloud-native design. High data transfer rates, super-low latency, connection and capacity, bandwidth efficiency, and durability per unit area are some of the distinctive properties of 5G technology that have the potential to assist tackle these difficulties (Soldani et al., 2017). Healthcare stakeholders may reorganize, transition to comprehensive data-driven individualized care, improve medical resource use, provide care delivery convenience, and boost patient value thanks to 5G.

cloud gaming services

5 ways that 5G will change healthcare#

  • Large image files must be sent quickly.
  • Expanding the use of telemedicine.
  • Improving augmented reality, virtual reality, and spatial computing.
  • Remote monitoring that is reliable and real-time.
  • Artificial Intelligence

Healthcare systems may enhance the quality of treatment and patient satisfaction, reduce the cost of care, and more by connecting all of these technologies over 5G networks (Att.com, 2017). 5G networks can enable providers to deliver more tailored and preventative treatment, rather than just responding to patients' illnesses, which is why many healthcare workers joined providers during the first round.


Challenges#

As with other advances, many industry professionals are cautious about 5G technology's worldwide acceptance in healthcare, as evidenced by the following significant challenges:

  • Concerns about privacy and security - The network providers must adhere to the health - care industry's stringent privacy regulations and maintain end-to-end data protection across mobile, IoT, and connected devices.
  • Compatibility of Devices - The current generation of 4G/LTE smartphones and gadgets are incompatible with the upcoming 5G networks. As a result, manufacturers have begun to release 5G-enabled smartphones and other products.
  • Coverage and Deployment - The current generation of 4G/LTE smartphones and gadgets are incompatible with the upcoming 5G networks. The present 4G network uses certain frequencies on the radio frequency band, often around 6 GHz; however, such systems are available exclusively in a few nations' metro/urban regions, and telecom carriers must create considerable equipment to overcome this difficulty (Chen et al., 2017).
  • Infrastructure - As part of the 5G network needs, healthcare facilities, clinics, and other healthcare providers/organizations will need to upgrade and refresh their infrastructure, apps, technologies, and equipment.

Conclusion#

5G has the potential to revolutionize healthcare as we know it. As we saw during the last epidemic, the healthcare business needs tools that can serve people from all socioeconomic backgrounds. Future improvements and gadgets based on new 5G devices and computers can stimulate healthcare transformation, expand consumer access to high-quality treatment, and help close global healthcare inequities (Thuemmler et al., 2017). For enhanced healthcare results, 5G offers network stability, speed, and scalability for telemedicine, as well as catalyzing broad adoption of cutting-edge technologies like artificial intelligence, data science, augmented reality, and the IoT. Healthcare organizations must develop, test, and deploy apps that make use of 5G's key capabilities, such as ultra-high bandwidth, ultra-reliability, ultra-low latency, and huge machine connections.

References#

  • Att.com. (2017). 5 Ways 5G will Transform Healthcare | AT&T Business. [online] Available at: https://www.business.att.com/learn/updates/how-5g-will-transform-the-healthcare-industry.html.
  • Carlson, E.K. (2020). What Will 5G Bring? Engineering.
  • Chen, M., Yang, J., Hao, Y., Mao, S. and Hwang, K. (2017). A 5G Cognitive System for Healthcare. Big Data and Cognitive Computing, 1(1), p.2.
  • Li, D. (2019). 5G and Intelligence Medicine—How the Next Generation of Wireless Technology Will Reconstruct Healthcare? Precision Clinical Medicine, 2(4).
  • Soldani, D., Fadini, F., Rasanen, H., Duran, J., Niemela, T., Chandramouli, D., Hoglund, T., Doppler, K., Himanen, T., Laiho, J. and Nanavaty, N. (2017). 5G Mobile Systems for Healthcare. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring).
  • Thayananthan, V. (2019). Healthcare Management using ICT and IoT-based 5G. International Journal of Advanced Computer Science and Applications, 10(4).
  • Thuemmler, C., Gavras, A. and Roa, L.M. (2017). Impact of 5G on Healthcare. 5G Mobile and Wireless Communications Technology, pp. 593-613.
  • Zhang, M. and Pickwell-Macpherson, E. (2019). The future of 5G Technologies in healthcare. 5G Radio Technologies Seminar.

5G Monetization | Multi Access Edge Computing

Introduction#

Consumers want quicker, better, more convenient, and revolutionary data speeds in this internet age. Many people are eager to watch movies on their smartphones while also downloading music and controlling many IoT devices. They anticipate a 5G connection, which will provide 100 times quicker speeds, 10 times more capacity, and 10 times reduced latency. The transition to 5G necessitates significant expenditures from service providers. To support new income streams and enable better, more productive, and cost-effective processes and exchanges, BSS must advance in tandem with 5G network installations (Pablo Collufio, 2019). Let's get ready to face the challenges of 5G monetization.

5G and Cloud Computing

cloud gaming services

Why 5G monetization?#

The appropriate 5G monetization solutions may be a superpower, allowing CSPs to execute on 5G's potential from the start. The commercialization of 5G is a hot topic. "Harnessing the 5G consumer potential" and "5G and the Enterprise Opportunity" are two studies that go through the various market prospects. They illustrate that, in the long term, there is a tremendous new income opportunity for providers at various implementation rates, accessible marketplaces, and industry specializations. “Getting creative with 5G business models” highlights how AR/VR gameplay, FWA (Fixed Wireless Access), and 3D video encounters could be offered through B2C, B2B, and B2B2X engagement models in a variety of use scenarios. To meet the 5G commitments of increased network speeds and spectrum, lower latency, assured service quality, connectivity, and adaptable offers, service suppliers must discuss their BSS evolution alongside their 5G installations, or risk being unable to monetize those new use cases when they become a real thing (Munoz et al., 2020). One of the abilities that will enable providers to execute on their 5G promises from day one is 5G monetization. CSPs must update their business support systems (BSS) in tandem with their 5G deployment to meet 5G use scenarios and provide the full promise of 5G, or risk slipping behind in the 5G race for lucrative 5G services (Rao and Prasad, 2018).

Development of the BSS architecture#

To fully realize the benefits of 5G monetization, service providers must consider the growth of their telecom BSS from a variety of angles:

  • Integrations with the network - The new 5G Basic standards specify a 5G Convergent Charging System (CCS) with a 5G Charging Function (CHF) that enables merged charging and consumption limit restrictions in the new service-based architecture that 5G Core introduces.
  • Service orchestration - The emergence of distributed systems and more business services need more complicated and stricter service coordination and fulfillment to ensure that goods, packages, ordeals, including own and third-party products, are negotiated, purchased, and activated as soon as clients require them.
  • Expose - Other BSS apps, surrounding levels such as OSS and Central networks, or 3rd parties and collaborators who extend 5G services with their abilities might all be consumers of BSS APIs (Mor Israel, 2021).
  • Cloud architecture - The speed, reliability, flexibility, and robustness required by 5G networks and services necessitate a new software architecture that takes into consideration BSS deployments in the cloud, whether private, public, or mixed.

Challenges to 5G Monetization#

Even though monetizing 5G networks appears to be a profitable prospect for telecommunications, it is not without flaws. The following are the major challenges:

  • Massive upfront investments in IT infrastructure, network load, and a radio access system, among other things.
  • To get optimal ROI, telecommunications companies must establish viable monetization alternatives (Bega et al., 2019).
  • The commercialization of 5G necessitates a change in telecom operations.

Case of Augmented Reality Games and Intelligent Operations#

With the 5G Core, BSS, and OSS in place, it's time to bring on a new partner: a cloud gaming firm that wants to deliver augmented reality monetization strategies to the operator's users (Feng et al., 2020). For gaming traffic, they want a specific network slice with assured service quality. Through a digital platform, a member in a smart, completely automated network may request their network slice and specify their SLAs. BSS decomposes this order into multiple sub-orders, such as the construction and provisioning of the particular portion through the OSS, once it receives it. The operator additionally uses their catalog-driven design to describe the item offered that its customers will acquire to get onboard new on the partner's network slice all in one location. This deal is immediately disseminated to all relevant systems, including online charging, CRM, and digital platforms, and may be generally consumed.

cloud gaming services

Conclusion#

5G can impact practically every industry and society. Even though there is a lot of ambiguity around 5G and a lot of technical concerns that need to be resolved, one thing is certain: 5G is the next big thing. Finally, whenever a user buys a new plan, he or she is automatically onboarded in the particular portion, often without affecting the system. The partnership will be able to monitor the network health and quality of various types of services for each customer in real time and will be able to take immediate decisions or conduct promotions based on this data (Bangerter et al., 2014). New platforms may adapt to changes based on factual resource use thanks to the BSS cloud architecture. All information regarding purchases, items, network usage, and profitability, among other things, is given back into circulation and utilized as feeds for infrastructure and catalog design in a closed-loop method.

References#

  • Bangerter, B., Talwar, S., Arefi, R., and Stewart, K. (2014). Networks and devices for the 5G era. IEEE Communications Magazine, 52(2), pp.90–96.
  • Bega, D., Gramaglia, M., Banchs, A., Sciancalepore, V. and Costa-Perez, X. (2019). A Machine Learning approach to 5G Infrastructure Market optimization. IEEE Transactions on Mobile Computing, pp.1–1.
  • Feng, S., Niyato, D., Lu, X., Wang, P. and Kim, D.I. (2020). Dynamic Game and Pricing for Data Sponsored 5G Systems With Memory Effect. IEEE Journal on Selected Areas in Communications, 38(4), pp.750–765.
  • Mor Israel (2021). How BSS can enable and empower 5G monetization. online Available at: https://www.ericsson.com/en/blog/2021/4/how-bss-can-enable-and-empower-5g-monetization.
  • Munoz, P., Adamuz-Hinojosa, O., Navarro-Ortiz, J., Sallent, O. and Perez-Romero, J. (2020). Radio Access Network Slicing Strategies at Spectrum Planning Level in 5G and Beyond. IEEE Access, 8, pp.79604–79618.
  • Pablo Collufio, D. (2019). 5G: Where is the Money? e-archivo.uc3m.es. online.
  • Rao, S.K. and Prasad, R. (2018). Telecom Operators’ Business Model Innovation in a 5G World. Journal of Multi Business Model Innovation and Technology, 4(3), pp.149–178.

Learn more about Edge Computing and its usage in different fields. Keep reading our blogs.

Differentiation between Edge Computing and Cloud Computing | A Study

Are you familiar with the differences between edge computing and cloud computing? Is edge computing a type of branding for a cloud computing resource, or is it something new altogether? Let us find out!

The speed with which data is being added to the cloud is immense. This is because the growing number of devices in the cloud are centralized, so it must transact the information from where the cloud servers are, hence data needs to travel from one location to another so the speed of data travel is slow. If this transaction starts locally, then the data travels at a shorter distance, making it faster. Therefore, cloud suppliers have combined Internet of Things strategies and technology stacks with edge computing for the best usage and efficiency.

In the following article, we will understand the differences between cloud and edge computing. Let us see what this is and how this technology works.

EDGE COMPUTING#

Edge computing platform

Edge Computing is a varied approach to the cloud. It is the processing of real-time data close to the data source at the edge of any network. This means applications close to the data generated instead of processing all data in a centralized cloud or a data center. It increases efficiency and decreases cost. It brings the storage and power closer to the device where it is most needed. This distribution eliminates lag and saves a scope for various other operations.

It is a networking system, within which data servers and data processing are closer to the computing process so that the latency and bandwidth problems can be reduced.

Now that we know what the basics of edge computing are, let's dive in a little deeper for a better understanding of terms commonly associated with edge computing:

Latency#

Latency is the delay in contacting in real-time from a remotely located data center or cloud. If you are loading an image over the internet, the time to show up completely is called the latency time.

Bandwidth#

The frequency of the maximum amount of data sent over an Internet connection at a time is called Bandwidth. We refer to the speed of sent and received data over a network that is calculated in megabits per second or MBPS as bandwidth.

Leaving latency and bandwidth aside, we choose edge computing over cloud computing in hard-to-reach locations, where there is limited or no connectivity to a central unit or location. These remote locations need local computing, and edge computing provides the perfect solution for it.

Edge computing also benefits from specialized and altered device functions. While these devices are like personal computers, they are not regular computing devices and perform multiple functions benefiting the edge platform. These specialized computing devices are intelligent and respond to machines specifically.

Benefits of Edge Computing#

  • Gathering data, analyzing, and processing is done locally on host devices on the edge of the network, which has the caliber to be completed within a fraction of a second.

  • It brings analytical capabilities comparatively closer to the user devices and enhances the overall performance.

  • Edge computing is a cheaper alternative to the cloud as data transfer is a lengthy and expensive process. It also decreases the risk involved in transferring sensitive user information.

  • Increased use of edge computing methods has transformed the use of artificial intelligence in autonomous driving. Artificial Intelligence-powered and self-driving cars and other vehicles require massive data presets from their surroundings to function perfectly in time. If we use cloud computing in such a case, it would be a dangerous application because of the lag.

  • The majority of OTT platforms and streaming service providers like Netflix, Amazon Prime, Hulu, and Disney+ to name a few, create a heavy load on cloud network infrastructure. When popular content is cached closer to the end-users in storage facilities for easier and quicker access. These companies make use of the nearby storage units close to the end-user to deliver and stream content with no lag if one has a stable network connection.

The process of edge computing varies from cloud computing as the latter takes considerably more time. Sometimes it takes up to a couple of seconds to channel the information to the data centers, ultimately resulting in delays in crucial decision-making. The signal latency can translate to huge losses for any organization. So, organizations prefer edge computing to cloud computing which eliminates the latency issue and results in the tasks being completed in fractions of a second.

CLOUD COMPUTING#

best cloud computing platform

A cloud is an information technology environment that abstracts, pools, and shares its resources across a network of devices. Cloud computing revolves around centralized servers stored in data centers in large numbers to fulfill the ever-increasing demand for cloud storage. Once user data is created on an end device, its data travels to the centralized server for further processing. It becomes tiresome for processes that require intensive computations repeatedly, as higher latency hinders the experience.

Benefits of Cloud Computing#

  • Cloud computing gives companies the option to start with small clouds and increase in size rapidly and efficiently as needed.

  • The more cloud-based resources a company has, the more reliable its data backup becomes, as the cloud infrastructure can be replicated in case of any mishap.

  • There is little to no service cost involved with cloud computing as the service providers conduct system maintenance on their own from time to time.

  • Cloud enables companies to help cut expenses in operational activities and enables mobile accessibility and user engagement framework to a higher degree.

  • Many mainstream technology companies have benefited from cloud computing as a resourceful platform. Slack, an American cloud-based software as a service, has hugely benefited from adopting cloud servers for its application of business-to-business and business-to-consumer commerce solutions.

  • Another largely known technology giant, Microsoft has its subscription-based product line ‘Microsoft 365' which is centrally based on cloud servers that provide easy access to its office suite.

  • Dropbox, infrastructure as a service provider, provides a service- cloud-based storage and sharing system that runs solely on cloud-based servers, combined with an online-only application.

cloud gaming services

KEY DIFFERENCES#

  • The main difference between edge computing and cloud computing is in data processing within the case of cloud computing, data travel is long, which causes data processing to be slower but in contrast edge computing reduces the time difference in the data processing. It's essential to have a thorough understanding of the working of cloud and edge computing.

  • Edge computing is based on processing sensitive information and data, while cloud computing processes data that is not time constrained and uses a lesser storage value. To carry out this type of hybrid solution that involves both edge and cloud computing, identifying one's needs and comparing them against monetary values must be the first step in assessing what works best for you. These computing methods vary completely and comprise technological advances unique to each type and cannot replace each other.

  • The centralized locations for edge computing need local storage, like a mini data center. Whereas, in the case of cloud computing, the data can be stored in one location. Even when used as part of manufacturing, processing, or shipping operations, it is hard to co-exist without IoT. This is because everyday physical objects that collect and transfer data or dictate actions like controlling switches, locks, motors, or robots are the sources and destinations that edge devices process and activate without depending upon a centralized cloud.

With the Internet of Things gaining popularity and pace, more processing power and data resources are being generated on computer networks. Such data generated by IoT platforms is transferred to the network server, which is set up in a centralized location.

The big data applications that benefit from aggregating data from everywhere and running it through analytics and machine learning to prove to be economically efficient, and hyper-scale data centers will stay in the cloud. We chose edge computing over cloud computing in hard-to-reach locations, where there is limited connectivity to a cloud-based centralized location setup.

CONCLUSION#

The edge computing and cloud computing issue does not conclude that deducing one is better than the other. Edge computing fills the gaps and provides solutions that cloud computing does not have the technological advancements to conduct. When there is a need to retrieve chunks of data and resource-consuming applications need a real-time and effective solution, edge computing offers greater flexibility and brings the data closer to the end user. This enables the creation of a faster, more reliable, and much more efficient computing solution.

Therefore, both edge computing and cloud computing complement each other in providing an effective response system that is foolproof and has no disruptions. Both computing methods work efficiently and in certain applications, edge computing fills and fixes the shortcomings of cloud computing with high latency, fast performance, data privacy, and geographical flexibility of operations.

Functions that are best managed by computing between the end-user devices and local networks are managed by the edge, while the data applications benefit from outsourcing data from everywhere and processing it through AI and ML algorithms. The system architects who have learned to use all these options together have the best advantage of the overall system of edge computing and cloud computing.

Learn more about different use cases on edge computing-

Condition-based monitoring - An Asset to equipment manufacturers (nife.io)

Computer Vision at Edge and Scale Story

Computer Vision at Edge is a growing subject with significant advancement in the new age of surveillance. Surveillance cameras can be primary or intelligent, but Intelligent cameras are expensive. Every country has some laws associated with Video Surveillance.

How do Video Analytics companies rightfully serve their customers, with high demand?

Nife helps with this.

Computer Vision at Edge

cloud gaming services

Introduction#

The need for higher bandwidth and low latency processing has continued with the on-prem servers. While on-prem servers provide low latency, they do not allow flexibility.

Computer Vision can be used for various purposes such as Drone navigation, Wildlife monitoring, Brand value analytics, Productivity monitoring, or even Package delivery monitoring can be done with the help of these high-tech devices. The major challenge in computing on the cloud is data privacy, especially when images are analyzed and stored.

Another major challenge is spinning up the same algorithm or application in multiple locations, which means hardware needs to be deployed there. Hence scalability and flexibility are the key issues. Accordingly, Computing and Computed Analytics are hosted and stored in the cloud.

On the other hand, managing and maintaining the on-prem servers is always a challenge. The cost of the servers is high. Additionally, any device failure adds to the cost of the system integrator.

Thereby, scaling the application to host computer vision on the network edge significantly reduces the cost of the cloud while providing flexibility of the cloud.

Key Challenges and Drivers of Computer Vision at Edge#

  • On-premise services
  • Networking
  • Flexibility
  • High Bandwidth
  • Low-Latency

Solution Overview#

Computer Vision requires high bandwidth and high processing, including GPUs. The Edge Cloud is critical in offering flexibility and a low price entry point of cloud hosting and, along with that, offering low latency necessary for compute-intensive applications.

Scaling the application to host on the network edge significantly reduces the camera's cost and minimizes the device capex. It can also help scale the business and comply with data privacy laws, e.g. HIPAA, GDPR, and PCI, requiring local access to the cloud.

How does Nife Help with Computer Vision at Edge?#

Use Nife to seamlessly deploy, monitor, and scale applications to as many global locations as possible in 3 simple steps. Nife works well with Computer Vision.

  • Seamlessly deploy and manage navigation functionality (5 min to deploy, 3 min to scale)
    • No difference in application performance (70% improvement from Cloud)
    • Manage and Monitor all applications in a single pane of glass.
    • Update applications and know when an application is down using an interactive dashboard.
    • Reduce CapEx by using the existing infrastructure.

A Real-Life Example of the Edge Deployment of Computer Vision and the Results#

Edge Deployment of Computer Vision

cloud gaming services

In the current practice, deploying the same application, which needs a low latency use case, is a challenge.

  • It needs man-hours to deploy the application.
  • It needs either on-prem server deployment or high-end servers on the cloud.

Nife servers are present across regions and can be used to deploy the same applications and new applications closer to the IoT cameras in Industrial Areas, Smart Cities, Schools, Offices, and in various locations. With this, you can monitor foot-fall, productivity, and other key performance metrics at lower costs and build productivity.

Conclusion#

Technology has revolutionized the world, and devices are used for almost all activities to monitor living forms. The network edge lowers latency, has reduced backhaul, and supports flexibility according to the user's choice and needs. We can attribute IoT cameras to scalability and flexibility, which are critical for the device. Hence, ensuring that mission-critical monitoring would be smarter, more accurate, and more reliable.

Want to know how you can save up on your cloud budgets? Read this blog.