2 posts tagged with "bandwidth"

View All Tags

Artificial Intelligence - AI in the Workforce

Learn more about Artificial Intelligence - AI in the workforce in this article.

Introduction#

An increase in data usage demands a network effectiveness strategy, with a primary focus on lowering overall costs. The sophistication of networks is expanding all the time. The arrival of 5G on top of existing 2G, 3G, and 4G networks, along with customers' growing demands for a user platform comparable to fibre internet, places immense strain on telecommunication operators handling day-to-day activities (Mishra, 2018). Network operators are also facing significant financial issues as a result of declining revenue per gigabyte and market share, making maximizing the impact on network investment strategies vital for existence.

AI

How can businesses use AI to change the way businesses make network financial decisions?#

From sluggish and labor-intensive to quick, scalable, and adaptable decisions - The traditional manual planning method necessitates a significant investment of both money and time. Months of labor-intensive operations such as data gathering, aggregation of data, prediction, prompting, proportioning, and prioritizing are required for a typical medium-sized system of 10,000 nodes. Each cell is simulated separately using machine learning, depending on its special properties. Several Key performance indicators are used in multivariable modeling approaches to estimate the efficiency per unit separately. By combining diverse planning inputs into the application, operators may examine alternative possibilities due to the significant reduction in turnaround time (Raei, 2017).

Moving from a network-centric to a user-centric approach - Basic guidelines are commonly used to compare usage to bandwidth. Customer bandwidth is influenced by some parameters, including resource consumption, such as DLPRB utilization. Individual unit KPI analysis utilizing machine learning solves this inefficacy, with the major two processes involved being traffic prediction and KPI predictions. The Key performance indicator model is a useful part of cognitive planning that is specific to each cell and is trained every day using the most up-to-date data. The per-cell model's gradient and angles are governed by its unique properties, which are impacted by bandwidth, workload, broadcast strength, as well as other factors (Kibria et al., 2018). This strategy provides more granularity and precision in predicting each cell's KPI and effectiveness.

artificial-intelligence-for-business

From one-dimensional to two-dimensional to three-dimensional - Availability and efficiency are frequently studied in a one-dimensional manner, with one-to-one mappings of assets such as PRB to quality and productivity. Nevertheless, additional crucial elements such as broadcast frequency or workload have a significant impact on cell quality and productivity. Optimal TCO necessitates a new method of capacity evaluation that guarantees the correct solution is implemented for each challenge (Pahlavan, 2021).

Candidate selection for improvement - Units with poor wireless reliability and effectiveness are highlighted as candidates for improvement rather than growth using additional parameters such as radio quality (CQI) and spectrum efficiency in cognitive planning. As a first resort, optimization operations can be used to solve low radio-quality cells to increase network capacity and performance. Instead of investing CAPEX in hardware expansion, cognitive planning finds low radio-quality cells where capacity may be enhanced through optimization (Athanasiadou et al., 2019).

Candidate selection for load-balancing#

Before advocating capacity increase, cognitive planning tools will always model load-balancing among co-sector operators. This is done to eliminate any potential for load-balancing-related benefits before investing. The load-balancing impact is modeled using the machine-learning-trained KPI model by assuming traffic shifts from one operator to another and then forecasting the efficiency of all operators even in the same section (He et al., 2016). If the expected performance after the test does not satisfy the defined experience requirements, an extension is suggested; alternatively, the program generates a list of suggested units for load-balancing.

Prioritization's worth for AI in the workforce#

When network operators are hesitant to spend CAPEX, a strong prioritizing technique is vital to maximizing the return on investment (ROI) while guaranteeing that even the most relevant aspects are handled. This goal is jeopardized by outdated approaches, which struggle to determine the appropriate response and have the versatility to gather all important indicators. In the case of network modeling, load corresponds to the number of consumers, utilization (DLPRB utilization) to the space occupancy levels, and quality (CQI) to the size (Maksymyuk, Brych and Masyuk, 2015). The amount of RRC users, which is near to demand as a priority measure, is put into the prioritizing procedure, taking into account the leftover areas. Further priority levels are adjusted based on cell bandwidth, resulting in a more realistic order.

Developers give ideal suggestions and growth flow (e.g. efficiency and load rebalancing ahead of growth) and generate actual value by combining all of these elements, as opposed to the conventional way, which involves a full examination of months of field data:

  • Optimization activities are used as a first option wherever possible, resulting in a 25% reduction in carrier and site expansions.
  • When compared to crowded cells detected by operators, congested cells found by cognitive planning had a greater user and traffic density, with an average of 21% more RRC users per cell and 19% more data volume per cell. As a result, the return on investment from the capacity increase is maximized (Pahlavan, 2021).
  • Three months before the experience objective was missed, >75 percent of the field-verified accuracy in determining which cells to grow when was achieved.
  • Reduce churn

Conclusion for AI in the workforce#

The radio access network (RAN) is a major component of a customer service provider's (CSP) entire mobile phone network infrastructural development, contributing to around 20% of a cellular manufacturer's capital expenditures (CapEx). According to the findings, carriers with superior connection speeds have greater average revenue per user (+31%) and lower overall turnover (-27 percent) (Mishra, 2018). As highlighted in this blog, using Machine learning and artificial intelligence for capacity management is critical for making intelligent network financial decisions that optimize total cost of ownership (TCO) while offering the highest return in terms of service quality: a critical pillar for customer service provider's (CSP) commercial viability.

Learn more about Nife to be informed about Edge Computing and its usage in different fields https://docs.nife.io/blog

Edge Gaming The Future

Introduction#

The gaming business, which was formerly considered a specialized sector, has grown to become a giant $120 billion dollar industry in the latest years (Scholz, 2019). The gaming business has long attempted to capitalize on new possibilities and inventive methods to offer gaming adventures, as it has always been the leading result of technology. The emergence of cloud gaming services is one of the most exciting advances in cloud computing technology in recent years. To succeed, today's gamers speed up connections. Fast connectivity contributes to improved gameplay. Gamers may livestream a collection of games on their smartphone, TV, platform, PC, or laptop for a monthly cost ranging from $10 to $35 (Beattie, 2020).

Cloud Gaming

Reasons to buy a gaming computer:

  • The gameplay experience is second to none.
  • Make your gaming platform future-proof.
  • They're prepared for VR.
  • Modified versions of your favourite games are available to play.
  • More control and better aim.

Why is Hardware PC gaming becoming more popular?#

Gamers are stretching computer hardware to its boundaries to get an edge. Consoles like the PlayStation and Xbox are commonplace in the marketplace, but customers purchasing pricey gaming-specific PCs that give a competitive advantage over the other gamers appear to be the next phenomenon. While the pull of consoles remains strong, computer gaming is getting more and more popular. It was no longer only for the die-hards who enjoy spending a weekend deconstructing their computer. A gaming PC is unrivalled when it comes to providing an unrivalled gaming experience. It's incredible to think that gamers could play the newest FPS games at 60fps or greater. Steam is a global online computer gaming platform with 125 million members, compared to 48 million for Xbox Live (Galehantomo P.S, 2015). Gaming computers may start around $500 and soon grow to $1500 or more, which is one of the most significant drawbacks of purchasing gaming PCs.

The majority of games are now downloadable and played directly on cell phones, video game consoles, and personal computers. With over 3 billion gamers on the planet, the possibility and effect might be enormous (Wahab et al., 2021). Cloud gaming might do away with the need for dedicated platforms, allowing players to play virtually any game on practically any platform. Users' profiles, in-game transactions, and social features are all supported by connectivity, but the videogames themselves are played on the gamers' devices. Gaming has already been growing into the cloud in this way for quite some time. Every big gaming and tech firm seems to have introduced a cloud gaming service in the last two years, like Project xCloud by Microsoft, PlayStation Now by Sony, and Stadia by Google.

Cloud Computing's Advantages in the Gaming World:

  • Security
  • Compatibility
  • Cost-effective
  • Accessibility
  • No piracy
  • Dynamic support
Cloud Gaming Services

What are Cloud Gaming Services, and how do they work?#

Cloud gaming shifts the processing of content from the user's device to the cloud. The game's perspective is broadcast to the person's devices through content delivery networks with local stations near population centres, similar to how different channels distribute the material. Size does matter, just like it does with video. A modest cell phone screen can show a good gaming feed with far fewer bits than a 55" 4K HDTV. In 2018, digital downloads accounted for more than 80% of all video game sales. A bigger stream requires more data, putting additional strain on the user's internet connection. Cloud streaming services must automatically change the bandwidth to offer the lowest amount of bits required for the best service on a specific device to control bandwidth (Cai et al., 2016).

Edge Gaming - The appeal of Edge Computing in Gaming#

Revenue from mobile gaming is growing more sociable, engaging, and dynamic. As games become more collaborative, realistic, and engaging, mobile gaming revenue is predicted to top $95 billion worth by 2022 (Choy et al., 2014). With this growth comes the difficulty of meeting consumers' desire for ultra-fast, low-latency connectivity, which traditional data centres are straining to achieve. Edge computing refers to smaller data centres that provide cloud-based computational services and resources closer to customers or at the network's edge. In smartphone games, even just a fraction of a millisecond of latency would be enough to completely ruin the gameplay. Edge technology and 5G connection assist in meeting low-latency, high-bandwidth needs by bringing high cloud computing power directly to consumers and equipment while also delivering the capacity necessary for high, multi-player gameplay.

Edge Computing in Gaming

Issues with Cloud Gaming#

Cloud technology isn't only the future of gaming it's also the future of hybridized multi-clouds and edge architecture as a contemporary internet infrastructure for businesses. However, this cutting-edge technology faces a few obstacles. Lag, also known as latency, is a delay caused by the time required for a packet of data to move from one place in a network to another. It's the misery of every online gamer's existence. Streaming video sputters, freezes, and fragments due to high latency networks (Soliman et al., 2013). While this might be frustrating when it comes to video material, it can be catastrophic when it comes to cloud gaming services.

Developers are Ready for the Change#

Gaming is sweeping the media landscape. Please have a look around if you are unaware of this information. Although cloud gameplay is still in its infancy, it serves as proof that processing can be done outside of the device. I hope that cloud gaming is treated as the proving point that it is. Because cloud gameplay always has physical issues, we should look to edge gaming to deliver an experience where gamers can participate in a real-time multiplayer setting.

References#

  • https://www.investopedia.com/articles/investing/053115/how-video-game-industry-changing.asp
  • Beattie, A. (2020). How the Video Game Industry Is Changing. [online] Investopedia. Available at:
  • Cai, W., Shea, R., Huang, C.-Y., Chen, K.-T., Liu, J., Leung, V.C.M. and Hsu, C.-H. (2016). The Future of Cloud Gaming . Proceedings of the IEEE, 104(4), pp.687-691.
  • Choy, S., Wong, B., Simon, G. and Rosenberg, C. (2014). A hybrid edge-cloud architecture for reducing on-demand gaming latency. Multimedia Systems, 20(5), pp.503-519.
  • Galehantomo P.S, G. (2015). Platform Comparison Between Games Console, Mobile Games And PC Games. SISFORMA, 2(1), p.23.
  • Soliman, O., Rezgui, A., Soliman, H. and Manea, N. (2013). Mobile Cloud Gaming: Issues and Challenges. Mobile Web Information Systems, pp.121-128.
  • Scholz, T.M. (2019). eSports is Business Management in the World of Competitive Gaming. Cham Springer International Publishing.
  • Wahab, A., Ahmad, N., Martini, M.G. and Schormans, J. (2021). Subjective Quality Assessment for Cloud Gaming. J, 4(3), pp.404-419.