19 posts tagged with "blog"

View All Tags

Why Do People Use VPNs? Do You Actually Need One?

Internet users are increasingly using virtual private networks, or VPNs, as privacy concerns rise in the contemporary digital era. But first of all, what is a virtual private network (VPN), how does it work, and is one required? Let us analyse it.

What is a Virtual Private Network?#

A service called a Virtual Private Network (VPN) establishes a safe, encrypted connection between your device and the internet. It functions as a tunnel that conceals your internet activity from government surveillance, your internet service provider (ISP), and other potential snoopers.

Through a remote server run by the VPN provider, your data is routed when you connect to the internet. By encrypting the data and hiding your IP address, this makes it more difficult for outside parties to monitor your online activities or steal your personal information.

mobile connect to vpn

How Do VPNs Operate?#

This is a condensed description of the actions a VPN does to protect you:

1. Establishing a VPN Server Connection#

Your device connects to a VPN server, which may be situated anywhere in the world, when you turn on a VPN. Between your device and the websites or services you're attempting to access, this server will serve as a go-between.

2. Encryption of Data#

All data sent from your device to the server is encrypted by the VPN once it is connected. This implies that the data cannot be read even if it is intercepted (for example, on a public Wi-Fi network). Learn more about VPN encryption.

3. Masking of IP Addresses#

Then, using the server's IP address rather than your own, the VPN server forwards your request to the website or service you're attempting to access. This gives the impression that the request is originating from the VPN server rather than your real location.

4. Safe Internet Access#

Data received back by the website or service is first decrypted by the VPN server before being sent back to your device. You can browse the web as usual, but with the increased privacy and security that comes with all of this happening in real-time.

Businesses also rely on advanced security solutions to protect their infrastructure. Read how Orel Zeke secured their cloud environment with Nife in this case study

Secure VPN connected to every device

What Makes a VPN Useful?#

1. Security and Privacy#

Protecting your privacy is one of the main justifications for using a VPN. By encrypting your data, virtual private networks (VPNs) make it nearly impossible for hackers or government organizations to track your online activities. This is particularly crucial while utilizing public Wi-Fi networks, as these are frequently the target of fraudsters looking to steal personal data.

2. Obtaining Geo-Restricted Information#

VPNs can also assist you in getting over geo-restrictions, which is helpful if you want to view content that is restricted to particular areas. To access streaming services like Netflix, Hulu, or BBC iPlayer that may be blocked in your country, for instance, you can use a VPN. The service can be tricked into believing that you are in a different region by connecting to a server in a different location. Read more about geo-blocking and how to bypass it.

3. Avoid Restrictions#

Some nations have governments that prohibit access to particular websites or services. If you live or travel in a nation with tight internet censorship, such as China or Iran, a virtual private network (VPN) can let you get beyond these limitations and access the open internet.

4. Secure Online Banking and Buying#

A VPN adds an additional degree of security while accessing financial information or making online purchases by encrypting your connection. It guarantees that your financial information is protected from possible cyberattacks, particularly while using unprotected networks like public Wi-Fi.

5. Privacy and Steering Clear of Tracking#

By hiding your true IP address, a VPN can help you stay anonymous when using the internet. Your IP address is used by websites to track your surfing activity, and this information can be used to target advertisements. A VPN allows you to prevent this tracking and make your online experience more private.

When is a VPN Actually Necessary?#

Even while VPNs have many advantages, not all internet users need them. A VPN is most helpful in the following scenarios:

1. When Using Wi-Fi in Public#

Public Wi-Fi networks, such as those found in coffee shops, hotels, and airports, are frequently unprotected. These networks make it simple for cybercriminals to intercept your data and steal your personal information. By encrypting your internet activity on public networks, a VPN offers protection.

2. When Getting to Know Private Information#

If you deal with sensitive data on a regular basis, such as banking information, medical records, or papers linked to your job, a virtual private network (VPN) provides an additional degree of protection when you access or send this data online.

3. While Observing Content Blocked by Regions#

A VPN can assist you in getting around these geographical limitations by connecting to a server in a nation where the content is available, such as when you're attempting to view a Netflix series, access a YouTube library, or use a service that is prohibited in your area.

4. When You'd Like to Remain Anonymous Online#

A VPN can be a useful tool for hiding your identity and preventing tracking if you value anonymity and don't want your IP address or surfing patterns to be monitored.

When a VPN May Not Be Necessary#

1. Everyday Surfing on Secure Networks#

You might not need a VPN if you're just utilizing a safe and reliable Wi-Fi network to browse the web at home without accessing critical information. Because HTTPS encryption is used by the majority of contemporary websites, your data is already protected while it is in transit.

secure vpn

2. Regarding Websites That Don't Need Privacy#

A VPN might not be very helpful if all you're doing is accessing websites like news sites, blogs, or forums that don't require you to log in or handle personal information. Nevertheless, it can still offer some extra privacy advantages.

3. Performance Issues#

The distance between your device and the VPN server, as well as the additional encryption process, can cause a VPN to slow down your internet connection. It might not be the greatest time to utilize a VPN unless security is a top concern if you're having trouble with poor speeds or an inconsistent connection.

Conclusion#

In short, a VPN is a powerful tool that can protect your privacy, secure your data, and give you more control over what you do online. Whether you're working on sensitive data, accessing restricted content, or simply browsing the web more securely, VPNs offer a significant layer of protection. However, it's important to weigh your needs—because, like any tool, VPNs are most effective when used for the right reasons.

For more insights on secure and scalable cloud solutions, visit Nife.io.

If you're ready to take your online privacy seriously, using a VPN might just be the solution you need. So, go ahead, protect yourself, and surf the web without the fear of prying eyes.

DevOps vs DevSecOps: Everything you need to know!

Which is preferable: DevSecOps or DevOps? While the two may appear quite similar, fundamental differences will affect IT and business performance and your ability to go forward with the appropriate application development framework for your firm.

In this article, we will look at the similarities and differences between DevOps and DevSecOps, as well as everything you need to know.


What is DevOps?#

DevOps is a synthesis of cultural concepts, practices, and tools designed to accelerate the delivery of applications and services (Leite et al., 2020). The method enables firms better to serve their consumers, such as Cloud DevOps. We do not separate development and operations teams from each other in a DevOps approach. We sometimes combine these groups into a single group where developers work across the DevOps lifecycle, from development to testing and deployment.

What is DevSecOps?#

DevSecOps optimizes security integration across the DevOps lifecycle, from basic design to validation, installation, and delivery. It resolves security vulnerabilities when they are more accessible and less expensive to fix. Furthermore, DevSecOps makes application and security architecture a shared responsibility for the development, security, and IT task groups rather than the primary responsibility of a security silo.

DevOps vs DevSecOps

What is the connection between DevOps and DevSecOps?#

Culture of Collaboration#

A collaborative culture is essential to DevOps and DevSecOps to meet development goals, such as quick iteration and deployment, without jeopardizing an app environment's safety and security. Both strategies entail consolidating formerly segregated teams to enhance visibility across the application's lifetime - from planning to application performance monitoring.

Automation.#

AI has the potential to automate phases in application development for both DevOps and DevSecOps. Auto-complete code and anomaly detection, among other devices, can be used in DevOps as a service. In DevSecOps, automated and frequent security checks and anomaly detection can aid in the proactive identification of vulnerabilities and security threats, especially in complex and dispersed systems.

Active surveillance.#

Continuously recording and monitoring application data to solve problems and promote improvements is an essential component of DevOps and DevSecOps methodologies. Access to real-time data is critical for improving system performance, minimizing the application's system vulnerabilities, and strengthening the organization's overall stance.

What distinguishes DevOps from DevSecOps?#

DevOps is primarily concerned with the collaboration between development and testing teams throughout the application development and deployment process. DevOps teams work together to implement standardized KPIs and tools. A DevOps strategy aims to increase deployment frequency while ensuring the application's consistency and productivity. A DevOps engineer considers how to distribute updates to an application while minimizing disruption to the client's experience.

DevSecOps originated from DevOps as teams discovered that the DevOps paradigm did not address security concerns adequately. Rather than retrofitting security into the build, DevSecOps arose to incorporate security management before all stages of the development cycle. This technique places application security at the start of the build process rather than after the development pipeline. A DevSecOps expert uses this new technique to ensure that apps are secure against cyberattacks before being delivered to the client and remain safe during application upgrades.

DevOps strategy

What activities differentiate DevOps and DevSecOps?#

  • Continuous Integration
  • Continuous delivery and continuous deployment
  • Microservices
  • Infrastructure as code (IaC)

The DevSecOps strategy includes the following aspects in addition to:

  • Common weakness enumeration (CWE)
  • Modeling of threats
  • Automated security testing
  • Management of Incidents

DevOps to DevSecOps transition#

Before making any modifications to your development process, get your teams on board with the concept of DevSecOps. Ensure that everyone understands the importance and advantages of protecting apps immediately and how they might affect application development.

Choose the best combination of security testing techniques#

The majority of security testing methodologies are available. SAST DAST IAST RASP, for example [(Landry, Schuette, and Schurgot, 2022)].

Create Coding Standards.#

Evaluating code quality is an important aspect of DevSecOps. Your team will be able to quickly safeguard its code in the future if it is solid and normalized.

Protect Your Application.#

Rather than attempting to protect the expanding perimeter, secure apps that run on dispersed infrastructure [(Landry, Schuette, and Schurgot, 2022)]. As a result, an implicit security strategy is more straightforward in IT organizations and strengthens your security in the long run.

Conclusion#

Should you use DevSecOps practices? There are, as we believe, no valid reasons not to. Even organizations that do not already have specialized IT security departments may have them coordinate a substantial number of the techniques and policies outlined above. DevSecOps may continuously improve the security and reliability of your software production without overburdening the development lifecycle or putting organizational assets at risk.

Cloud Deployment Models and Their Types

We have access to a common pool of computer resources in the cloud (servers, storage, applications, and so on) when we use cloud computing. You just need to request extra resources as needed. Continue reading as we discuss the various types of cloud deployment models and service models to assist you in determining the best option for your company.

cloud deployment models

What is a cloud deployment model?#

A cloud deployment model denotes a specific cloud environment depending on who controls security, who has access to resources, and whether they are shared or dedicated. The cloud deployment model explains how your cloud architecture will appear, how much you may adjust, and whether or not you will receive services [(Patel and Kansara, 2021)]. The links between the infrastructure and your users are also represented by types of cloud deployment models. Because each type of cloud deployment model may satisfy different organizational goals, you should choose the model that best suits the approach of your institution.

Different Types of Cloud Deployment Models#

The cloud deployment model specifies the sort of cloud environment based on ownership, scalability, and access, as well as the nature and purpose of the cloud [(Gupta, Gupta and Shankar, 2021)]. It defines the location of the servers you're using and who owns them. The cloud deployment model describes the appearance of your cloud infrastructure, what you may alter, and whether you will be provided with services or must design everything yourself.

Types of cloud deployment models

Types of cloud deployment models are:

Public Cloud Deployment#

Anyone may use the public cloud to access systems and services. Because it is exposed to everybody, the public cloud may be less secure. The public cloud is one in which cloud infrastructure services are made available to the general public or significant industrial organizations over the internet. In this deployment model, the infrastructure is controlled by the organization that provides the cloud services, not by the user.

Private Cloud Deployment#

The private cloud deployment approach is opposed to that of the public cloud. It is a one-on-one setting for a single user (customer). It is not necessary to share your hardware with anyone. The contrast between private and public clouds is in how all of the hardware is handled. In this deployment model of cloud computing, the cloud platform is deployed in a secure cloud environment secured by robust firewalls and overseen by an organization's IT staff.

Hybrid Cloud Deployment#

Hybrid cloud deployment provides the best of both worlds by linking the public and private worlds with a layer of proprietary software. With hybrid cloud deployment, you may host the app in a secure environment while benefiting from the cost benefits of the public cloud. In this, organizations can migrate data and applications between clouds by combining two or more cloud deployment strategies. The hybrid cloud deployment is also popular for 'cloud bursting.' It means that if a company operates an application on-premises, but it experiences a high load, it might explode onto the public cloud.

Community Cloud Deployment#

It enables a collection of businesses to access systems and services. It is a distributed system formed by combining the services of many clouds to meet the special demands of a community, industry, or enterprise. The community's infrastructure might be shared by organizations with similar interests or duties. In this deployment model of cloud computing, cloud deployment is often handled by a third party or a collaboration of one or more community organizations.

Cloud Computing Service Models#

Cloud computing enables the delivery of a variety of services defined by roles, service providers, and user firms. The following are major categories of cloud deployment models and services:

Cloud Computing Service Models

Infrastructure as a Service (IaaS)#

IaaS refers to the employment and use of a third-party provider's IT Physical Infrastructure (network, storage, and servers) [(Malla and Christensen, 2019)]. Users can access IT resources via an internet connection because they are hosted on external servers.

Platform as a Service (PaaS)#

PaaS provides for the outsourcing of physical infrastructure as well as the software environment, which includes databases, integration layers, runtimes, and other components.

Software as a Service (SaaS)#

SaaS is delivered through the internet and does not require any prior installation. The services are available from anywhere in the world for a low monthly charge.

Conclusion#

Over time, the cloud has changed drastically. It was initially only an unusual choice with a few modifications. It is available in a variety of flavors, and you can even establish your Private cloud deployment or Hybrid Cloud deployment in your data center. Each deployment model of cloud computing offers a unique offering that may considerably boost your company's worth. You may also change your Cloud deployment model as your needs change.

How does cloud computing affect budget predictability for CIOs?

Cloud computing companies may assist IT executives in laying the groundwork for success, such as increasing deployment speed and assuring future flexibility. However, the landscape is complicated. While technology is rapidly changing the corporate landscape, technology investment procedures have not always kept up. Let's look at how cloud computing may affect CIO budget predictability.

Cloud computing companies

Role of CIOs in Cloud Budget Predictability#

CIOs will need to remain up to date on the newest innovations to make the best decisions on behalf of their businesses to drive their digital transformation. Because of the cloud's influence, as well as the DevOps movement, software development and IT operations have been merged and simplified. As infrastructure and applications are no longer independent, the CIO is no longer required to manage manual IT chores [(Makhlouf, 2020)]. Cost-effectiveness and efficiency must be prioritised in their strategy to save cloud budgets, which will bring a new dimension to their conventional job inside a company.

CIOs must also become more adaptable and agile. There are now so many distinct cloud providers that enterprises must employ a multi-access edge computing-cloud approach.

This implies:

  • Businesses will be free to select cloud solutions based on their merits rather than being dependent on a single source.
  • The CIO will be in charge of expanding a multi-access edge computing-cloud strategy, which means they must think about things like security, service integration, and cost.

Cloud computing companies will increasingly rely on their CIO to develop useful solutions to support digital transformation as cloud computing platforms evolve. As demand grows more than ever, businesses will have a broader selection of cloud-based solutions to choose from. As a result, the CIO's function will be expanded to include both technical expertise and business-oriented strategic thinking.

cloud computing technology

CIOs Perspective: From Cost to Investment#

CIOs have long struggled with the impression of IT as a cost centre. The convergence of technology and business strategy might provide CIOs with the chance to abandon a cost-cutting attitude in favour of an investment philosophy that values strategic expenditure to boost revenue, growth, stock price, or other measures of company and shareholder value.

As the technology function assumes a more prominent role, CIOs may need to address critical issues such as core modernization, cloud business models, investment governance and value measurement, the incompatibility of fixed budgets with Agile development, and the impact of automation on the workforce to save cloud budgets [(Liu et al., 2020)].

Cloud Computing Affecting Core Modernization#

Many CIOs acknowledge that old core systems lack the agility required to build and scale creative and disruptive new technology solutions. Legacy systems can be rehosted, re-platformed, rearchitected, rebuilt, or replaced—strategies that vary in impact, cost, risk, and value. However, core modernization should be considered as a technological investment with other options. A big distribution company's CIO opted to postpone a modernization initiative and shift funding to a bespoke warehouse management program that provided the firm with a competitive edge.

multi-access-edge-computing

Cloud Business Models on OPEX/CAPEX#

Cloud computing companies have welcomed cloud solutions with open arms, drawn by their ease of use and deployment. Cloud computing platforms may foster innovation and encourage experimentation by removing the burden of purchasing and maintaining technological infrastructure [(Kholidy, 2020)]. However, every investment involves risks, and cloud computing platforms are no exception. Because the cloud switches technology spending from the capital expense column to the operating expense column, rushing to the cloud might have a significant impact on firm financials. Finance and IT divisions may collaborate to properly identify these expenses and analyze and maximize the impact to save cloud budgets.

Cloud computing platforms

Governance and Value Assessment#

Technology leaders may improve their capacity to create convincing business cases that properly anticipate technology project ROI and assess the performance and value of each investment [(Liu et al., 2018)]. It can be beneficial to have a specialized financial team responsible for modeling, administering, and analyzing the value of IT investments to save cloud budgets.

Taking such actions can help decrease the notion that technology is an incomprehensible black box, make it simpler for technology executives to justify spending, and help them create closer connections with CFOs.

Incompatibility of Fixed Budgets#

Agile and other flexible delivery techniques are on the increase. CIOs may manage investment portfolios in the same way that venture capitalists do, but only if financing mechanisms are changed to favor Agile, product-focused settings. A flexible budgeting methodology may provide product teams with the necessary creativity and responsibility to achieve business value and save cloud budgets.

Automation Impact#

Automation and robotics' ability to streamline and accelerate IT delivery is changing the way technology and cloud computing companies work, collaborate, and create value [(Raj and Raman, 2018)]. Better workflows and various resource needs might drive increased production output and save cloud budgets as automation enables teams to exchange manual and repetitive jobs for those requiring higher-order abilities.

What to look out for when evaluating potential cloud providers?

The lack of a standardized methodology for evaluating Cloud Service Providers (CSPs), along with the reality that no two Cloud Service Providers are alike, complicates the process of picking the best one for your firm. This post will help you work through the characteristics you may use to pick a supplier that can best meet your organization's technological and operational demands.

So, how do you go about selecting a Cloud hosting provider? To begin, it is useful to understand who the primary players are today.

cloud service providers

The Players#

The sector is crowded, with the big three — AWS, Microsoft Azure, and Google Cloud Services — as well as smaller specialized firms. Of course, AWS, Google Cloud Services, and Azure reign supreme. There are many cloud providers in Singapore such as NIFE, which is a developer-friendly serverless platform designed to let businesses quickly manage, deploy, and scale applications globally.

cloud service providers

Criteria for Primary Evaluation#

When deciding which Cloud Service Providers to utilize, consider the alternatives that different providers supply and how they will complement your specific company characteristics and objectives. The following are the main factors to consider for practically any business:

1. Cloud Security#

You want to know exactly what your security objectives are, the security measures provided by each provider, and the procedures they employ to protect your apps and data. Furthermore, ensure that you properly grasp the exact areas for which each party is accountable.

Security is a primary priority in Cloud Computing Services, therefore it's vital to ask specific questions about your specific use cases, industry, legal needs, and any other issues you may have [(Kumar and Goyal, 2019)]. Do not fail to assess this key element of functioning in the cloud.

2. Cloud Compliance#

Next, select a Cloud Computing Service that can assist you in meeting compliance criteria specific to your sector and business. Whether you are subject to GDPR, SOC 2, PCI DSS, HIPAA, or another standard, ensure that you understand what it will take to accomplish compliance once your apps and data are housed on a public cloud architecture [(Brandis et al., 2019)]. Make sure you understand your duties and which parts of compliance the supplier will assist you in checking off.

3. Architecture#

Consider how the architecture will be integrated into your processes today and in the future when selecting a cloud provider. If your company depends heavily on Amazon or Google Cloud Services, it could be wise to go to such Cloud hosting providers for ease of integration and consolidation. When making your selection, you should also consider cloud storage designs. When it comes to storage, the three major suppliers have comparable architectures and offer a variety of storage options to meet a variety of demands, but they all have various forms of archive storage [(Narasayya and Chaudhuri, 2021)].

4. Manageability#

You should also spend some time establishing what different [Cloud hosting providers] will need you to handle. Each service supports several orchestration tools and interfaces with a variety of other services. If your firm relies heavily on certain services, ensure that the cloud provider you select has a simple method to interface with them.

Before making a final selection, you should assess how much time and effort it will take your team to handle various components of the cloud infrastructure.

5. Service Levels#

This aspect is critical when a company's availability, reaction time, capacity, and support requirements are stringent. Cloud Service Level Agreements (Cloud SLAs) are an essential consideration when selecting a provider. Legal considerations for the security of data hosted in the cloud service, particularly in light of GDPR rules, should also be given special consideration [(World Bank, 2022)]. You must be able to rely on your cloud service provider to do the correct thing, and you must have a legal agreement in place to protect you when something goes wrong.

6. Support#

Another factor that must be carefully considered is support. In certain circumstances, the only way to receive help is through a chat service or a contact center. You may or may not find this acceptable. In other circumstances, you may have access to a specialized resource, but there is a significant likelihood that time and access will be limited. Before selecting a Cloud Computing Services, inquire about the amount and type of assistance you will receive. The cloud providers in Singapore like NIFE provide excellent customer support.

7. Costs#

While cost should never be the sole or most essential consideration, there is no disputing that price will play a significant influence in determining which cloud service providers you use.

8. Container Capabilities#

If your company wants to move its virtual server workloads to containers, container orchestration, managed containers, and/or serverless architecture, you should thoroughly examine each Cloud hosting provider's container capabilities. The cloud providers in Singapore like NIFE use Docker Containers.

best Cloud Company platforms

References#

Brandis, K., Dzombeta, S., Colomo-Palacios, R. and Stantchev, V. ([2019]). Governance, Risk, and Compliance in Cloud Scenarios. Applied Sciences, online 9(2), p.320. doi:10.3390/app9020320.

Kumar, R. and Goyal, R. ([2019]). On cloud security requirements, threats, vulnerabilities and countermeasures: A survey. Computer Science Review, 33, pp.1-48. doi:10.1016/j.cosrev.2019.05.002.

Narasayya, V. and Chaudhuri, S. ([2021]). Cloud Data Services: Workloads, Architectures and Multi-Tenancy. Foundations and Trends® in Databases, 10(1), pp.1-107. doi:10.1561/1900000060.

World Bank. ([2022]). Government Migration to Cloud Ecosystems: Multiple Options, Significant Benefits, Manageable Risks.

Wu, Y., Lei, L., Wang, Y., Sun, K. and Meng, J. ([2020]). Evaluation on the Security of Commercial Cloud Container Services. Lecture Notes in Computer Science, pp.160-177. doi:10.1007/978-3-030-62974-8_10.

Simplify Your Deployment Process | Cheap Cloud Alternative

As a developer, you're likely familiar with new technologies that promise to enhance software production speed and app robustness once deployed. Cloud computing technology is a prime example, offering immense promise. This article delves into multi-access edge computing and deployment in cloud computing, providing practical advice to help you with real-world application deployments on cloud infrastructure.

cloud-deployment-768x413.jpg

Why is Cloud Simplification Critical?#

Complex cloud infrastructure often results in higher costs. Working closely with cloud computing consulting firms to simplify your architecture can help reduce these expenses [(Asmus, Fattah, and Pavlovski, 2016)]. The complexity of cloud deployment increases with the number of platforms and service providers available.

The Role of Multi-access Edge Computing in Application Deployment#

[Multi-access Edge Computing] offers cloud computing capabilities and IT services at the network's edge, benefiting application developers and content providers with ultra-low latency, high bandwidth, and real-time access to radio network information. This creates a new ecosystem, allowing operators to expose their Radio Access Network (RAN) edge to third parties, thus offering new apps and services to mobile users, corporations, and various sectors in a flexible manner [(Cruz, Achir, and Viana, 2022)].

Choose Between IaaS, PaaS, or SaaS#

In cloud computing, the common deployment options are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). PaaS is often the best choice for developers as it manages infrastructure, allowing you to focus on application code.

Scale Your Application#

PaaS typically supports scalability for most languages and runtimes. Developers should understand different scaling methods: vertical, horizontal, manual, and automatic [(Eivy and Weinman, 2017)]. Opt for a platform that supports both manual and automated horizontal scaling.

Consider the Application's State#

Cloud providers offering PaaS often prefer greenfield development, which involves new projects without constraints from previous work. Porting existing or legacy deployments can be challenging due to ephemeral file systems. For greenfield applications, create stateless apps. For legacy applications, choose a PaaS provider that supports both stateful and stateless applications.

PaaS provider Nife

Select a Database for Cloud-Based Apps#

If your application doesn't need to connect to an existing corporate database, your options are extensive. Place your database in the same geographic location as your application code but on separate containers or servers to facilitate independent scaling of the database [(Noghabi, Kolb, Bodik, and Cuervo, 2018)].

Consider Various Geographies#

Choose a cloud provider that enables you to build and scale your application infrastructure across multiple global locations, ensuring a responsive experience for your users.

Use REST-Based Web Services#

Deploying your application code in the cloud offers the flexibility to scale web and database tiers independently. This separation allows for exploring technologies you may not have considered before.

Implement Continuous Delivery and Integration#

Select a cloud provider that offers integrated continuous integration and continuous delivery (CI/CD) capabilities. The provider should support building systems or interacting with existing non-cloud systems [(Garg and Garg, 2019)].

Prevent Vendor Lock-In#

Avoid cloud providers that offer proprietary APIs that can lead to vendor lock-in, as they might limit your flexibility and increase dependency on a single provider.

best Cloud Company in Singapore

References

Asmus, S., Fattah, A., & Pavlovski, C. ([2016]). Enterprise Cloud Deployment: Integration Patterns and Assessment Model. IEEE Cloud Computing, 3(1), pp.32-41. doi:10.1109/mcc.2016.11.

Cruz, P., Achir, N., & Viana, A.C. ([2022]). On the Edge of the Deployment: A Survey on Multi-Access Edge Computing. _ACM Computing Surveys (CSUR).

Eivy, A., & Weinman, J. ([2017]). Be Wary of the Economics of ‘Serverless' Cloud Computing. IEEE Cloud Computing, 4(2), pp.6-12. doi:10.1109/mcc.2017.32.

Garg, S., & Garg, S. ([2019]). Automated Cloud Infrastructure, Continuous Integration, and Continuous Delivery Using Docker with Robust Container Security. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 467-470). IEEE.

Noghabi, S.A., Kolb, J., Bodik, P., & Cuervo, E. ([2018]). Steel: Simplified Development and Deployment of Edge-Cloud Applications. In 10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18).

What is the Principle of DevOps?

There are several definitions of DevOps, and many of them sufficiently explain one or more characteristics that are critical to finding flow in the delivery of IT services. Instead of attempting to provide a complete description, we want to emphasize DevOps principles that we believe are vital when adopting or shifting to a DevOps method of working.

devops as a service

What is DevOps?#

DevOps is a software development culture that integrates development, operations, and quality assurance into a continuous set of tasks (Leite et al., 2020). It is a logical extension of the Agile technique, facilitating cross-functional communication, end-to-end responsibility, and cooperation. Technical innovation is not required for the transition to DevOps as a service.

Principles of DevOps#

DevOps is a concept or mentality that includes teamwork, communication, sharing, transparency, and a holistic approach to software development. DevOps is based on a diverse range of methods and methodologies. They ensure that high-quality software is delivered on schedule. DevOps principles govern the service providers such as AWS Direct DevOps, Google Cloud DevOps, and Microsoft Azure DevOps ecosystems.

DevOps principles

Principle 1 - Customer-Centric Action#

Short feedback loops with real consumers and end users are essential nowadays, and all activity in developing IT goods and services revolves around these clients.

To fulfill these consumers' needs, DevOps as a service must have : - the courage to operate as lean startups that continuously innovate, - pivot when an individual strategy is not working - consistently invest in products and services that will provide the highest degree of customer happiness.

AWS Direct DevOps, Google Cloud DevOps, and Microsoft Azure DevOps are customer-oriented DevOps.

Principle 2 - Create with the End in Mind.#

Organizations must abandon waterfall and process-oriented models in which each unit or employee is responsible exclusively for a certain role/function and is not responsible for the overall picture. They must operate as product firms, with an explicit focus on developing functional goods that are sold to real consumers, and all workers must share the engineering mentality necessary to imagine and realise those things (Erich, Amrit and Daneva, 2017).

Principle 3 - End-to-end Responsibility#

Whereas conventional firms build IT solutions and then pass them on to Operations to install and maintain, teams in a DevOps as a service are vertically structured and entirely accountable from idea to the grave. These stable organizations retain accountability for the IT products or services generated and provided by these teams. These teams also give performance support until the items reach end-of-life, which increases the sense of responsibility and the quality of the products designed.

Principle 4 - Autonomous Cross-Functional Teams#

Vertical, fully accountable teams in product organizations must be completely autonomous throughout the whole lifecycle. This necessitates a diverse range of abilities and emphasizes the need for team members with T-shaped all-around profiles rather than old-school IT experts who are exclusively informed or proficient in, say, testing, requirements analysis, or coding. These teams become a breeding ground for personal development and progress (Jabbari et al., 2018).

Principle 5 - Continuous Improvement#

End-to-end accountability also implies that enterprises must constantly adapt to changing conditions. A major emphasis is placed on continuous improvement in DevOps as a service to eliminate waste, optimize for speed, affordability, and simplicity of delivery, and continually enhance the products/services delivered. Experimentation is thus a vital activity to incorporate and build a method of learning from failures. In this regard, a good motto to live by is "If it hurts, do it more often."

Principle 6 - Automate everything you can#

Many firms must minimize waste to implement a continuous improvement culture with high cycle rates and to develop an IT department that receives fast input from end users or consumers. Consider automating not only the process of software development, but also the entire infrastructure landscape by constructing next-generation container-based cloud platforms like AWS Direct DevOps, Google Cloud DevOps, and Microsoft Azure DevOps that enable infrastructure to be versioned and treated as code (Senapathi, Buchan and Osman, 2018). Automation is connected with the desire to reinvent how the team provides its services.

devops as a service

Remember that a DevOps Culture Change necessitates a Unified Team.#

DevOps is just another buzzword unless key concepts at the foundation of DevOps are properly implemented. DevOps concentrates on certain technologies that assist teams in completing tasks. DevOps, on the other hand, is first and foremost a culture. Building a DevOps culture necessitates collaboration throughout a company, from development and operations to stakeholders and management. That is what distinguishes DevOps from other development strategies.

Remember that these concepts are not fixed in stone while shifting to DevOps as a service. DevOps Principles should be used by AWS Direct DevOps, Google Cloud DevOps, and Microsoft Azure DevOps according to their goals, processes, resources, and team skill sets.

What is Edge to Cloud? | Cloud Computing Technology

Multi-access edge computing. Server computing power has traditionally been utilised to execute activities such as data reduction or the creation of complex distributed systems. Such 'intelligent' operations are handled by servers in the cloud model so that they may be moved to other devices with little or no computational capacity.

Cloud Computing Technology

Why Edge Cloud?#

Edge cloud shifts a large portion of these processing chores to the client side, which is known as Edge Computing for Enterprises. Edge Network computing often refers to IoT devices, but it may also apply to gaming hardware that processes telemetry on the device rather than transmitting it to the cloud. This opens up several potentials for enterprises, particularly when it comes to providing low-latency services across apps or high-density platform utilisation using Multi-access edge computing.

Why is an edge to cloud connectivity required?#

The increased requirement for real-time data-driven decision-making, particularly by Edge Computing for Enterprises, is one driver of today's edge-to-cloud strategy [(Pastor-Vargas et al., 2020)]. For example, autonomous vehicle technologies rely on artificial intelligence (AI) and machine learning (ML) systems that can discern whether an item on the roadway is another car, a human, or road debris in a fraction of a second.

Edge Computing for Enterprises

What is an edge-to-cloud platform?#

An edge-to-cloud platform is intended to provide a Cloud Computing technology and experience to all of an organization's apps and data, independent of location. It provides a uniform user experience and prioritizes security in its design. It also enables enterprises to seek new business prospects by providing new services with a point-and-click interface and easy scalability to suit changing business demands.

How is an edge-to-cloud platform work?#

To provide a cloud experience everywhere, a platform must have certain distinguishing features:

Self-service: Organizations want the ability to swiftly and simply spin up resources for new initiatives, such as Edge Computing for Enterprises, new virtual machines (VMs), or container or MLOps services. Users may pick and deploy the cloud services they require with a single click.

Rapid scalability: To deliver on the cloud's promise of agility, a platform must incorporate built-in buffer capacity, so that when additional capacity is required, it is already installed and ready to go [(Osia et al., 2018)].

Pay-as-you-go: Payment should be based on the real capacity used, allowing firms to launch new initiatives without incurring large upfront expenses or incurring procurement delays.

Managed on your behalf: An edge-to-cloud platform should alleviate the operational load of monitoring, updating infrastructure and utilising Multi-access edge computing, allowing IT to concentrate on growing the business and producing revenue.

edge-to-cloud platform

Why is an edge-to-cloud approach required?#

Organizations throughout the world are embracing digital transformation by using Edge Computing for Enterprises, but in many cases, their existing technological infrastructure must be re-examined to meet the needs of data growth, Edge networks, IoT, and remote workforces [(Nezami et al., 2021)]. A single experience with the same agility, simplicity, and pay-per-use flexibility across an organization's whole hybrid IT estate is provided via an edge-to-cloud strategy and Multi-access edge computing. This implies that enterprises no longer have to make concessions to operate mission-critical programmes, and essential enterprise data services may now access both on-premises and public Cloud Computing technology resources.

What does this signify for your network design?#

By merging Edge Computing for Enterprises and Cloud Computing technology, you may make use of the power of distributed systems by processing data on devices that then transfer it to the cloud. It can be processed, analysed, or saved here with minimal (or even no) processing power. Because of an Edge Network and cloud architecture, linked automobiles that exchange information, for example, may analyse data without relying on a server's processing capability.

What are the Advantages of Edge -to- Cloud Computing technology?#

Organizations benefit from the edge-to-cloud experience in several ways:

  • Increase agility: Edge Networks and cloud solutions enable enterprises to respond rapidly to business needs, capitalise on market opportunities as they occur, and reduce time to market for new products.
  • Application modernization: Even mission-critical workloads that are not suitable for moving to the public cloud may be performed efficiently on today's as-a-service platforms.
  • Make use of the capabilities of hybrid cloud systems without complications: The edge-to-cloud platform provides the benefits of hybrid cloud adoption and Multi-access edge computing without the associated administrative issues. The user experience of applications operating on an as-a-service platform remains consistent.
  • With Edge-to-Cloud Computing technology, enterprises can simply establish the ideal blend of on- and off-premises assets and swiftly move between them when business and market conditions change (Milojicic, 2020).

Recognize the transformative power of applications and data:

Some data sets are either too vast or too important to migrate to the cloud.

Content Delivery Networking | Best Cloud Computing Companies

Significant changes in the digital world over the last several decades have prompted businesses to seek new methods to offer information. As a result, Content Delivery Networks, or CDNs, have grown in popularity. Content Delivery Networking global servers that enable consumers to get material with minimal delay [(Goyal, Joshi and Ram, 2021)]. CDN Network is being used by an increasing number of enterprises to allow their big worldwide audience to access their services.

Content Delivery Networking

Benefits of Content Delivery Networking (CDN)#

1. Reduce Server Load#

Remember that a Content Delivery Networks are a globally spread network of servers used to deliver content. Because of the intentional placement of servers over huge distances, no server is at risk of being overwhelmed. This frees up total capacity, allowing for more concurrent users while lowering bandwidth and delivery costs [(Benkacem et al., 2018)].

2. Improve Website Performance and Speed#

A company may utilise CDNs to swiftly distribute high-performance website material by caching it on CDN servers nearest to end users. This content can include HTML code, picture files, dynamic content, and JavaScript. As a result, when website visitor requests a page or content, they do not have to wait for the request to be routed to the origin server.

3. Allow for Audience Segmentation Using User Analytics#

One advantage of Content Delivery Networks that is sometimes ignored is their capacity to deliver useful audience insights. User analytics such as real-time load data, capacity per customer, most active locations, and the popularity of various content assets provide a wealth of information that may be utilized to identify trends and content consumption habits. Businesses may utilize this information to assist their developers in further optimizing the website, improving the user experience, and contributing to increased sales and conversions.

4. Lower Network Latency and Packet Loss#

If these packets must travel over vast distances and through several devices before reaching the end user, some may be lost along the way. They might also be delayed, increase latency, or arrive at the end user in a different sequence than planned, causing a jitter [(Wichtlhuber, Reinecke and Hausheer, 2015)]. All of this results in a less-than-ideal end-user experience, especially when the material sent includes high-definition video, audio, or live streaming.

Content Delivery Network in Edge computing

5. Turn on Advanced Website Security#

Improved website security is an indirect advantage of Content Delivery Networks services. This is notably useful in DDoS assaults, in which attackers attempt to overload a critical DNS server by delivering a massive amount of queries. The objective is to knock down this server and, with it, the website. Content Delivery Networking can mitigate such DDoS assaults by functioning as a DDoS protection and mitigation platform, distributing the load evenly throughout the network's whole capacity, and safeguarding data centers [(Li and Meng, 2021)].

6. Increase the Accessibility of Content#

CDN Network may absorb all of this traffic and disperse it throughout its distributed infrastructure, allowing a company to improve its content available regardless of demand. If one server fails, additional points of presence (PoPs) can pick up the traffic and keep the service running.

7. Cost Savings from Bandwidth Reduction#

CDNs are indirectly responsible for saving money and reducing unnecessary expenses and losses related to server failures and hacked websites due to their capacity to defeat one of the most popular forms of cyber assaults in the form of DDoS protection. In general, using the best CDN provider will save organizations money on the costs of putting up infrastructure, hosting, and servers all over the world.

8. Effectively Expand Audience Reach and Scale#

Content Delivery Networking makes it easier and more cost-effective to send information to consumers in locations remote from a company's headquarters and primary servers using CDN Cloud. They also help to ensure that clients have a consistent user experience. Keeping clients delighted in this manner will have a snowball effect and drive audience expansion, helping organizations to efficiently extend into new areas.

9. A CDN Allows for Global Reach#

Over one-third of the world's population is online, implying that worldwide internet use has expanded dramatically in the previous 15 years. CDN Cloud acceleration with local POPs is provided through CDNs. Because of its worldwide reach, any latency issues that disrupt long-distance online transactions and create poor load times would be eliminated.

Edge Computing and CDN

10. Customer Service is Available 24/7#

Quality Content Delivery Networking has a reputation for providing excellent customer service among the best CDN [(Herbaut et al., 2016)]. In other words, there is always a CS team available to you. Whenever something goes wrong, you have a backup ready to assist you in resolving your performance issues. Having a support team on speed dial is a wise business move because you're not just paying for a cloud service, but for a wide range of services that will help your company flourish on a worldwide scale.

Save Cloud Budget with NIFE | Edge Computing Platform

Cloud cost optimization is the process of finding underutilized resources, minimizing waste, obtaining more discounted capacity, and scaling the best cloud computing services to match the real necessary capacity—all to lower infrastructure as a service price [(Osypanka and Nawrocki, 2020)].

cloud gaming services

Nife is a Singapore-based Unified Public Cloud Edge best cloud computing platform for securely managing, deploying, and scaling any application globally using Auto Deployment from Git. It requires no DevOps, servers, or infrastructure management. There are currently many best cloud computing companies in Singapore and NIFE is one of the best cloud computing companies in Singapore.

What makes Nife the best Cloud Company in Singapore?#

Public cloud services are well-known for their pay-per-use pricing methods, which charge only for the resources that are used. However, in most circumstances, public cloud services charge cloud clients based on the resources allocated, even if those resources are never used. Monitoring and controlling cloud services is a critical component of cloud cost efficiency. This can be challenging since purchasing choices are often spread throughout a company, and people can install cloud services and commit to charges with little or no accountability [(Yahia et al., 2021)]. To plan, budget, and control expenses, a cloud cost management approach is required. Nife utilizes cloud optimization to its full extent thus making it one of the best cloud companies in Singapore.

What Factors Influence Your Cloud Costs?#

Several factors influence cloud expenses, and not all of them are visible at first.

Public cloud services typically provide four price models:

1. **Pay as you go:** Paying for resources utilized on an hourly, minutely, or secondary basis.

2. **Reserved instances:** Paying for a resource in advance, often for one or three years.

3. **Spot instances:** Buying the cloud provider's excess capacity at steep prices, but with no assurance of dependability [(Domanal and Reddy, 2018)].

4. **Plans for savings:** Some cloud providers provide volume discounts based on the overall amount of cloud services ordered by an enterprise.

cloud gaming services

What cost factors make Nife the best cloud computing platform?#

The cost factors which make Nife the best cloud computing platform are:

  • Utilization of computes instances — with prices variable depending on the instance type and pricing strategy.
  • Utilization of cloud storage services — with varying costs depending on the service, storage tier, storage space consumed, and data activities done.
  • Database services are commonly used to run managed databases on the cloud, with costs for compute instances, storage, and the service itself [(Changchit and Chuchuen, 2016)].
  • Most cloud providers charge for inbound and outgoing network traffic.
  • Software licensing – even if the cost of a managed service is included in the per-hour price, the software still has a cost in the cloud.
  • Support and consultancy – In addition to paying for support, the best cloud computing platforms may require extra professional services to implement and manage their cloud systems.
best cloud computing platform

What are Nife's Cost Saving Strategies that make it the best cloud computing services provider?#

Here is the list of cost factors making NIFE the best cloud computing services provider:

Workload schedules

Schedules can be set to start and stop based on the needs of the task. There is no point to activate and pay for a resource if no one is utilising it.

Make use of Reserved Instances.

Businesses considering long-term cloud computing investments might consider reserved instances. Cloud companies such as NIFE offer savings of up to 75% for pledging to utilise cloud resources in advance.

Utilize Spot Instances

Spot instances have the potential to save much more than allocated instances. Spot instances are a spare capacity that is sold at a discount by the cloud provider [(Okita et al., 2018)]. They are back on the market and can be acquired at a discount of up to 90%.

Utilize Automation

Use cloud automation to deploy, set up, and administer Nife's best cloud computing services wherever possible. Automation operations like backup and storage, confidentiality and availability, software deployment, and configuration reduce the need for manual intervention. This lowers human mistakes and frees up IT employees to focus on more critical business operations.

Automation has two effects on cloud costs:

1. You obtain central control by automating activity. You may pick which resources to deploy and when at the department or enterprise level.

2. Automation also allows you to adjust capacity to meet current demand. Cloud providers give extensive features for sensing application load and usage and automatically scaling resources based on this data.

Keep track of storage use.

The basic cost of cloud storage services is determined by the storage volumes provisioned or consumed. Users often close projects or programs without removing the data storage. This not only wastes money but also raises worries about security. If data is rarely accessed but must be kept for compliance or analytics, it might be moved to archive storage.

Develop Digital-First Culture | Edge Computing Applications

A technology-first mindset change is happening. Digital leaders want to grow worldwide with flexibility, surge forward, and provide new world-class user experiences while doubling digital output. Making the transfer to the cloud is not only a technological or operational problem but also a huge culture shift that begins at the top, with the computers and systems accountable for assuring the success of the transformation.

Edge Computing Applications

Digital-First Culture#

Developing a digital-first culture entails more than just using cutting-edge technologies. Create an agile company where technologies and business culture collaborate to optimize processes, maximize efficiency, and provide an outstanding customer experience (Merkt, Lang, and Schmidt, 2021). To do this, corporate leaders must first work on instilling a digital-first attitude in their employees, ensuring that they are digitally literate and comfortable adjusting to new technology.

Need to Adopt a Digital-First Culture#

Business leaders cannot afford to overlook the importance of culture. It is critical to comprehend the magnitude of the digital transformation's core strategic paradigm change. Culture is the collection of attitudes and behaviors that define how things are done in a company (Tuukkanen, Wolgsjö, and Rusu, 2022).

A digitalization-friendly culture possesses the following characteristics:

  1. Encourages an external rather than an internal orientation.
  2. Delegation takes precedence over control.
  3. Emphasizes daring rather than prudence.
  4. Focuses on action rather than preparation.
  5. Prefers teamwork over solo effort.

Benefits of a Digital-First Culture#

A digital-first culture can assist the leader in future-proofing the organization and emerging as a leader who establishes new industry norms and standards. At the very least, it will assist the company in being fluid and responsive to market and socioeconomic conditions (Ghosh et al., 2021). Among the more precise benefits of engaging in a digital-first workplace are:

  • Reducing team silos and increasing openness.
  • Increasing overall agility and adaptability.
  • Enhancing data collection.

Strategies for Creating a Digital-First Culture#

  1. Concentrate on the People: Since people are typically resistant to change, introducing new technology without adequate support will not produce the expected outcomes. Furthermore, some people are concerned that automation and technology will eliminate their jobs. To effectively develop a digital-first culture, address these concerns as soon as feasible.

  2. Begin at the Top: Senior management has the key to developing a business culture. Leaders must advocate the strategy in everything they do while attempting to develop a digital-first culture. Set a good example.

  3. Embrace Technology: Digitization reduces the possibility of data loss or missing crucial information. That is why it is critical to integrate your various technologies as much as possible so that diverse company operations can run smoothly.

  4. Share a Common Vision: Managers, executives, and employees all need to push for the same goal: the success of the company. When writing job descriptions, be sure to include the technological tools, talents, and working style that the company anticipates (Kontić and Vidicki, 2018).

Developing a Cloud Mindset#

Hybrid cloud migration is about more than just technology; it is also a huge culture shift that necessitates careful consideration of the systems and technology involved in the journey. A transition to the cloud necessitates a much broader change in management style than other innovation initiatives due to the impact on skills and money, as well as on both commercial and technology goals (Marty, 2014).

Bringing the "cloud mindset" to use!

Edge Computing for Enterprises

A transition to the cloud necessitates a much deeper change in management style than many other technology-driven initiatives due to the influence on skills and money, as well as on both business and technical goals. Rather than lifting VM instances and throwing them over the wall into somebody else's data center, organizations should shift to a "move and improve" mindset that allows them to accept the cloud's native functionality to deliver various business benefits (Solberg, Traavik, and Wong, 2020).

Thinking “Cloud-First” vs “Lift and Shift”#

The capacity to benefit from the cloud's flexibility, scalability, and safety does not come by just transferring VM instances to a cloud computing platform; leaders must think very differently regarding existing software and services and think cloud-first.

Leaders should look for a cloud partner that not only knows how to construct and maintain world-class data centers but will also work with them to establish the culture and processes required for the business to be successful in the cloud (Baumgartner, Hartl, and Hess, 2021).

Conclusion#

Certainly, digital transformation is all about a new attitude as much as it is about technology. As part of the overall organizational change plan, organizations should be able to create a cultural roadmap and a cultural change strategy, which will then be a component of the entire transformation program (Ghosh et al., 2021).

Following a meaningful digital transformation, a plan is more than just checking boxes. Cloud - Check. Mobile app - Check. A brand-new website - Check. If it were that simple, everyone would have done it by now.

What are Cloud Computing Services [IaaS, CaaS, PaaS, FaaS, SaaS]

DevOps Automation

Everyone is now heading to the Cloud World (AWS, GCP, Azure, PCF, VMC). A public cloud, a private cloud, or a hybrid cloud might be used. These cloud computing services offer on-demand computing capabilities to meet the demands of consumers. They provide options by keeping IT infrastructure open, from data to apps. The field of cloud-based services is wide, with several models. It might be difficult to sort through the abbreviations and comprehend the differences between the many sorts of services (Rajiv Chopra, 2018). New versions of cloud-based services emerge as technology advances. No two operations are alike, but they do have some qualities. Most crucially, they simultaneously exist in the very same space, available for individuals to use.

DevOps Automation
cloud computing technology

Infrastructure as a Service (IaaS)#

IaaS offers only a core infrastructure (VM, Application Define Connection, Backup connected). End-users must set up and administer the platform and environment, as well as deploy applications on it (Van et al., 2015).

Examples - Microsoft Azure (VM), AWS (EC2), Rackspace Technology, Digital Ocean Droplets, and GCP (CE)

Advantages of IaaS

  • Decreasing the periodic maintenance for on-premise data centers.
  • Hardware and setup expenditures are eliminated.
  • Releasing resources to aid in scaling
  • Accelerating the delivery of new apps and improving application performance
  • Enhancing the core infrastructure's dependability.
  • IaaS providers are responsible for infrastructure maintenance and troubleshooting.

During service failures, IaaS makes it simpler to access data or apps. Security is superior to in-house infrastructure choices.

Container as a Service (CaaS)#

CaaS is a type of container-based virtualization wherein customers receive container engines, management, and fundamental computing resources as a service from the cloud service provider (Smirnova et al., 2020).

Examples - are AWS (ECS), Pivotal (PKS), Google Container Engine (GKE), and Azure (ACS).

Advantages of CaaS

  • Containerized applications have all the necessary to operate.

  • Containers can accomplish all that VM could without the additional resource strain.

  • Containers need lower requirements and do not require a separate OS.

  • Containers are maintained isolated from each other despite both having the very same capabilities.

  • The procedure of building and removing containers is rapid. This speeds up development or operations and reduces time to market.

Platform-as-a-Service (PaaS)#

It offers a framework for end-users to design, operate, and administer applications without having to worry about the complexities of developing and managing infrastructure (Singh et al., 2016).

Examples - Google App Engine, AWS (Beanstalk), Heroku, and CloudFoundry.

Advantages of PaaS

  • Achieve a competitive edge by bringing their products to the marketplace sooner.

  • Create and administer application programming interfaces (APIs).

  • Data mining and analysis for business analytics

  • A database is used to store, maintain, and administer information in a business.

  • Build frameworks for creating bespoke cloud-based applications.

  • Put new languages, OS, and database systems into the trial.

  • Reduce programming time for platform tasks such as security.

Function as a Service (FaaS)#

FaaS offers a framework for clients to design, operate, and manage application features without having to worry about the complexities of developing and managing infrastructure (Rajan, 2020).

Examples - AWS (Lamda), IBM Cloud Functions, and Google Cloud Function

Advantages of FaaS

  • Businesses can save money on upfront hardware and OS expenditures by using a pay-as-you-go strategy.

  • As cloud providers deliver on-demand services, FaaS provides growth potential.

  • FaaS platforms are simple to use and comprehend. You don't have to be a cloud specialist to achieve your goals.

  • The FaaS paradigm makes it simple to update apps and add new features.

  • FaaS infrastructure is already highly optimized.

Software as a Service (SaaS)#

SaaS is also known as "on-demand software" at times. Customers connect a thin client using a web browser (Sether, 2016). Vendors may handle everything in SaaS, including apps, services, information, interfaces, operating systems, virtualisation, servers, storage, and communication. End-users must utilize it.

Examples - Gmail, Adobe, MailChimp, Dropbox, and Slack.

Advantages of SaaS

  • SaaS simplifies bug fixes and automates upgrades, relieving the pressure on in-house IT workers.

  • Upgrades pose less risk to customers and have lower adoption costs.

  • Users may launch applications without worrying about managing software or application. This reduces hardware and license expenses.

  • Businesses can use APIs to combine SaaS apps with other software.

  • SaaS providers are in charge of the app's security, performance, and availability to consumers.

  • Users may modify their SaaS solutions to their organizational processes without having any impact according to their infrastructures.

Conclusion for Cloud Computing Services#

Cloud services provide several options for enterprises in various industries. And each of the main — PaaS, CaaS, FaaS, SaaS, and IaaS – has advantages and disadvantages. These services are available on a pay-as-you-go arrangement through the Internet. Rather than purchasing the software or even other computational resources, users rent them from a cloud computing solution (Rajiv Chopra, 2018). Cloud services provide the advantages of sophisticated IT infrastructure without the responsibility of ownership. Users pay, users gain access, and users utilise. It's as easy as that.

Why Hybrid Cloud? An overview of the top benefits of hybrid

[hybrid cloud computing

Hybrid cloud Solutions are becoming more popular. A hybrid cloud infrastructure combines workload mobility, automation, and administration over two or several data centres, generally a mix of private (on-premise) and public (off-premise) clouds. Originally, public clouds were hosted off-site, whereas private clouds were hosted on-site. Some public cloud services are hosted in their clients; on-premise data centres, while some businesses are increasingly constructing private clouds in vendor-owned, off-premises data centres. The mix of private and public cloud platforms that allows applications to migrate between both the two interrelated domains is the cornerstone of a hybrid cloud paradigm (Aktas, 2018). This portability across cloud services allows enterprises to be more flexible and agile in their information configurations. Every hybrid cloud system is unique since the specific architecture is determined by the organization's objectives and goals. In this article, we'll go over the fundamentals of hybrid cloud services and describe the primary benefits of moving to a hybrid model.

hybrid cloud computing
cloud computing solutions

The Most Common Applications of a Hybrid Cloud#

Solution:

In the last decade, hybrid cloud solutions have enabled enterprises to gain a competitive edge by gaining on-demand access to greater capacity features and functionality than they could build up in their data centres (Celesti et al., 2019).

Typical hybrid cloud use cases include:#

  • Ease into Cloud Migration

  • Optimize Workload Resources

  • Protect Your Data

  • Process Large Data Sets

Hybrid cloud benefits

Enterprise businesses may benefit from hybrid cloud computing in a variety of ways.

Cloud Bursting can help you meet high service demand:

Hybrid clouds enable enterprises to meet peak load for applications or services without incurring the significant expense of functionality to support their existing data centres.

Make Data and Applications Available to Remote Workers:

Employees of any business with valid authorisation can access cloud-hosted data and apps from anywhere around the globe. Organizations that use hybrid cloud solutions may use their network to give employees remote connection to cloud-based and on-premises data and apps (Talaat et al., 2020).

Observe Data Privacy and Localization Laws:

Organizations that use hybrid cloud solutions do not have to create data centres in each nation in which they operate. They could store domestically collected customer information in public cloud locations that meet data localization criteria while still protecting their customers' privacy as needed by law.

Improve Data Security and Protect Sensitive Data:

When it comes to digital security, hybrid cloud solutions provide enterprises with more options. Businesses can keep their more confidential material in on-premise data centres that are difficult to assault by hostile actors.

Increase the operational scalability:

Public cloud service providers have enabled storage capacity and computational power more inexpensive and available to enterprises on a large scale. Organizations may grow their operations as required, avoiding capital expenses and management obligations (Segec et al., 2020).

Enhance your disaster recovery and business continuity:

When an organisation encounters a service outage and must implement its disaster recovery strategy to ensure business continuity and minimise unexpected downtime that negatively affects the customer experience, portable apps through hybrid clouds provide a substantial competitive advantage.

Reduced IT and operational costs:

Higher utilisation rates for IT resources, lower costs and more effective IT expenditure are all advantages of hybrid cloud enterprises.

Get your hands on cutting-edge tools and technologies:

When it comes to researching and adopting best-of-breed solutions to meet any application workload, organisations with hybrid cloud capabilities have the most options.

Encourage innovation:

Hybrid cloud solutions are boosting innovation by making it easier for businesses to establish new services and enabling them to better fulfil their consumers' demands

(Barbierato et al., 2021). Businesses may utilise public cloud services to build and test new apps before deploying them to production.

Cons of moving to the hybrid cloud:

While a hybrid cloud model has numerous advantages, it may not be the best choice for every firm. Depending on the company's aims, funding, and experience, the disadvantages may exceed the benefits.

Hardware costs:

One of the benefits of a hybrid cloud approach is its flexibility, control, and personalization. However, such advantages come at the expense of extra hardware expenses (Vera et al., 2019).

Need to manage multiple vendors and platforms

Running a hybrid cloud requires keeping track of different suppliers and platforms and managing them across two computing environments.

Lack of visibility:

Cloud solutions are always complicated. When your computing environments are spread across two or more clouds, the task becomes considerably more challenging.

This might make establishing a clear image of your total cloud environment challenging.

Conclusion:#

Finally, you must assess the advantages and downsides of a hybrid solution with the organization's needs and priorities, but just a hybrid cloud model is a wonderful alternative for corporate firms seeking the most of both technological environments.

A hybrid model allows for keeping control over highly sensitive information while also allowing businesses to extend their activities quickly and reliably without spending a lot of money (Feng et al., 2019).

View this blog in video form!

Containers or Virtual Machines? Get the Most Out of Our Edge Computing Tasks

The vast majority of service providers now implement cloud services, and it has shown to be a success, with increased speed capacity installations, easier expandability and versatility, and much fewer hours invested on multiple hardware data center equipment. Conventional cloud technology, on the opposite side, isn't suitable in every situation. Azure by Microsoft, Google Cloud Platform (GCP), and AWS by Amazon are all conventional cloud providers with data centers all over the globe. Although each supplier's data center capacity is continually growing, such cloud services providers are not near enough to clients whenever a program requires the best performance and low delay. Consider how aggravating it is to enjoy a multiplayer game and have the frame rate decrease, or to stream a video and have the visual or sound connection delay. Edge computing is useful whenever speed is important or produced data has to be kept near to the consumers (Shi et al., 2016). This article evaluates two approaches to edge computing: 'Edge virtual machines (VMs)' and 'Edge containers', and helps developers determine which would be ideal for business.

What is Edge Computing?#

There are just a few data center areas available from the main cloud service providers. Despite their remarkable computing processing capability, the three top cloud service providers have only roughly 150 areas, most of which are in a similar region. These only cover a limited portion of the globe. Edge computing is powered by a considerably higher number of tiny data centers all over the globe. It employs a point of presence (PoP), which is often placed near wherever data is accessed or created. These PoPs operate on strong equipment and have rapid, dependable network access (Shi and Dustdar, 2016). It isn't an "either-or" situation when it comes to choosing between standard cloud and edge computing. Conventional cloud providers' data centers are supplemented or enhanced by edge computing.

Edge Computing platform

[Edge computing] ought to be the primary supplier in several situations such as:

Streaming - Instead of downloading, customers are increasingly opting to stream anything. They anticipate streams to start right away, creating this a perfect application for edge computing.

Edge computing for live streaming

Gaming - Ultra-low lag is beneficial to high scores in games and online gameplay.

Manufacturing - In manufacturing, the Internet of Things (IoT) and operational technology (OT) offer exciting new ways to improve monitoring systems and administration as well as run machines.

Edge Virtual Machines (Edge VMs)#

In a nutshell, virtual machines are virtual machines regardless of wherever they operate. Beginning with the hardware layer, termed as a bare-metal host server, virtual machines depend on a hypervisor such as VMware or Hyper-V to distribute computational resources across distinct virtual machine cases. Every virtual machine is a self-contained entity with its OS, capable of handling almost any program burden. The flexibility, adaptability, and optimum durability of these operations are significantly improved by virtual machine designs. Patching, upgrades, and improvement of the virtual machine's OS are required on a routine basis. Surveillance is essential for ensuring the virtual machine instances' and underpinning physical hardware infrastructure's stability (Zhao et al., 2017). Backup and data restoration activities must also be considered. All this amounts to a lot of time spent on inspection and management.

Virtual machines (VMs) are great for running several apps on the very same computer. This might be advantageous based on the demand. Assume users wish to run many domains using various Tomcat or .NET platforms. Users can operate them simultaneously without interfering with some other operations. Current apps may also be simply ported to the edge using VMs. If users utilize an on-premises VM or public cloud infrastructure, users could practically transfer the VM to an edge server using a lifting and shifting strategy, wherein users do not even affect the configuration of the app configuration or the OS.

Edge Containers#

A container is a virtualized, separated version of a component of a programme. Containers can enable flexibility and adaptability, although usually isn't for all containers inside an application framework, only for the one that needs expanding. It's simple to spin up multiple versions of a container image and bandwidth allocation among them after developers constructed one. Edge containers, like the containers developers have already seen, aren't fully virtualized PCs. Edge containers only have userspace, and they share the kernel with other containers on the same computer (Pires, Simão, and Veiga, 2021). It is often misinterpreted as meaning that physical machines provide less separation than virtual ones. Containers operating on the very same server, for instance, utilize the very same virtualization layer and also have recourse to a certain OS. Even though this seldom creates issues, it can be a stumbling barrier for services that run on the kernel for extensive accessibility to OS capabilities.

Difference Between VMs and Edge Containers#

Edge containers are appropriate whenever a developer's software supports a microservice-based design, which enables software systems to operate and scale individually. There is also a reduction in administrative and technical costs. Since the application needs specific OS integration that is not accessible in a container, VM is preferred when developers need access to a full OS. VM is required for increased capabilities over the technology stack, or if needed to execute many programs on the very same host (Doan et al., 2019).

Conclusion#

Edge computing is a realistic alternative for applications that require high-quality and low-delay access. Conventional systems, such as those found in data centers and public clouds, are built on VMs and Edge containers, with little change. The only significant distinction would be that edge computing improves users' internet access by allowing them to access quicker (Satyanarayanan, 2017). Developers may pick what's suitable for their requirements now that they understand further about edge computing, such as the differences between edge VMs and edge containers.

How Can 5G Connections Deliver 100 Times Faster Speeds and Monetize

In this age of the internet, customers seek faster, stronger, better accessible, and more innovative data rates. Most users want to view videos on their phones as well as download files and operate a variety of IoT devices. They expect a 5G connection to deliver 100 times faster speeds, ten times greater capacity, and ten times lower latency. The shift to 5G requires considerable expenditures from telecommunications companies (Ahokangas et al., 2019). To provide new income streams and enable better effects and cost-effective processes, BSS should advance in tandem with 5Generation network installations. So get ready to face the difficulties of 5G monetization.

What is 5G Monetization?#

The commercialization of 5G is a hot topic. "Utilising the 5G customer possibility" and "5G, as well as the Business Potential" are two studies that go through the various market prospects. It illustrates that, in the long term, there is still a tremendous new income opportunity for carriers at multiple solution rates, targeted regions, and industrial control. "Taking liberties with 5G commercial patterns" highlights what AR/VR entertainment, Fixed Wireless Access (FWA), and 3D graphics experience might be supplied via B2C, B2B, and B2B2X interaction designs. Network operators should analyse their BSS progression along with their 5G facilities to fulfil the 5G obligations of greater network rate of speed and frequency band, ultra-low latency, fully convinced quality of service, communication, and flexibility. Operators must take the chance or risk missing out on some of these potential applications when they become a reality (Dramitinos, Stamoulis, and Lonsethagen, 2017). 5G monetization is among the capabilities that will allow companies to deliver on their 5G commitments right away. To satisfy 5G use cases and deliver the full potential of 5G, CSPs must upgrade their BSS in parallel with their 5G rollout, or face falling behind in the 5G competition for profitable technology.

Addressing the Development of the BSS Architecture#

To effectively understand the benefits of 5G monetization, network operators must consider the growth of their telecommunication BSS from a range of viewpoints:

  • 5G Convergent Charging System (CCS): These latest 5G Basic specifications define a CCS, which includes a 5G Charging Function (CHF), that enables merged charges and expenditure limitation management in the modern business design. The CHF is triggered by both physical and digital activities and either triggers the OCS (online charging system) for internet grading or generates an uncensored EDR (event data record) for offline grading (Stojanović, Radenković, and Bogdanović, 2021).

  • Orchestration, Completion, and Guarantee of Service: As more distributed systems and commercial services arise, service synchronization and fulfilment must become more difficult and stringent to guarantee that commodities, bundles, and trials, involving own and third-party items, are discussed, acquired, and engaged as soon as customers demand them.

  • Exposure: As the 5G network connects new business opportunities and sectors, distributors must ensure that existing BSS features are available to anyone who wants to safely use those via standardized TMF Open APIs. Additional BSS apps, adjacent layers including OSS and Core network, or third parties and collaborators who extend 5G products with their own capabilities might all be consumers of BSS APIs.

  • Cloud Architecture: The productivity, efficiency, versatility, and robustness required by 5G systems and services necessitate a new software design that considers BSS installations in the cloud, whether private, public, or hybrid.

Network operators are unlikely to entirely alter current BSS in all of these sectors at the very same time. Future 5G earnings won't all be available right away; they'll arrive in waves as various markets and sectors mature. To determine when business development will begin or how this process or path will appear, carriers must consider their unique scenario, success in the market, desired place in the 5G supply chain, and evolutionary competence (Yeh et al., 2020).

The AR Gaming Use Case and Intelligent Operations#

The 5G Core along with BSS and OSS all in place will bring along a potential partner: a cloud gaming provider that intends to promote [AR gaming] to the carrier's subscribers. For such gaming data, companies want a specific network segment with an assured level of service. Each collaborator can demand their network connection and establish their SLAs using distribution platforms in a smart, fully automated network. BSS breaks down this ordering into multiple sub-orders, like the construction and deployment of the particular portion via the OSS, when it receives it. All specified SLAs are simply assigned in the particular portion at the very same time, and verification begins monitoring the defined indications immediately. There is no human interference in any of this.

The operator additionally uses its archive design to describe the service offering that its customers will acquire in addition to being implemented on the partner's particular portion all in one location (Smith and Ugolini, 2021). This promotion is immediately disseminated to all relevant systems, including online charging, CRM, and digital platforms, and may be consumed immediately. It's also accessible to partners via an API, who may combine it with additional perks while offering it to customers. The operators can utilize smart suggestions to target individual customers with the new offer depending on their consumption habits and behavior.

cloud gaming services
cloud gaming services

Conclusion for 5G Monetization#

Ultimately, whenever a customer decides to buy a package, they automatically implement it in the network segment, often without touching the system. The partners would be able to monitor the networking health-related level of performance details for every customer instantaneously and will also be ready to obtain immediate decisions or conduct offers based on this data. New platforms can adapt to changes based on factual capacity because of the BSS cloud architecture (Peterson and Sunay, 2020). Every detail relating to transactions, items, network bandwidth, and profitability goals, along with other factors, is given back into circulation and utilized as parameters for networking and inventory development in a confined manner.

Computing versus Flying Drones | Edge Technology

Multi-access edge computing (MEC) has evolved as a viable option to enable mobile platforms to cope with computational complexity and lag-sensitive programs, thanks to the fast growth of the Internet of Things (IoT) and 5G connectivity. Computing workstations, on the other hand, are often incorporated in stationary access points (APs) or base stations (BSs), which has some drawbacks. Thanks to drones' portability, adaptability, and maneuverability, a new approach to drone-enabled airborne computing has lately received much interest (Busacca, Galluccio, and Palazzo, 2020). Drones can be immediately dispatched to defined regions to address emergency and/or unanticipated needs when the computer servers included in APs/BSs are overwhelmed or inaccessible. Furthermore, relative to land computation, drone computing may considerably reduce work latency and communication power usage by making use of the line-of-sight qualities of air-ground linkages. Drone computing, for example, can be useful in disaster zones, emergencies, and conflicts when grounded equipment is scarce.


Drones as the Next-Generation Flying IoT#

Drones will use a new low-power design to power the applications while remaining aloft, allowing them to monitor users and make deliveries. Drones with human-like intelligence will soon be able to recognize and record sportsmen in action, follow offenders, and carry things directly to the home. But, like with any efficient system, machine learning may consume energy, thus research on how to transfer a drone's computing workloads to a detector design to keep battery use low to keep drones flying for very much longer is necessary. Drones are a new type of IoT gadget that flies through the air with complete network communication capabilities (Yazid et al., 2021). Smart drones with deep learning skills must be able to detect and follow things automatically to relieve users of the arduous chore of controlling them, all while operating inside the power constraints of Li-Po batteries.

Drone-assisted Edge Computing#

Drone-assisted Edge Computing

The 5G will result in a significant shift in communications technologies. 5G will be required to handle a huge amount of customers and networking equipment with a wide range of applications and efficiency needs (Hayat et al., 2021). A wide range of use instances will be implemented and back, with the Internet of Things (IoT) becoming one of the most important due to its requirement to communicate a large number of devices that collect and transmit information in numerous different applications such as smart buildings, smart manufacturing, and smart farming, and so on. Drones could be used to generate drone cells, which also discusses the requirement for combining increasing pressure of IoT with appropriate consumption of network resources, or perhaps to establish drones to deliver data transmission and computer processing skills to mobile users, in the incident of high and unusual provisional incidents generating difficult and diverse data-traffic volume.

How AI at the Edge Benefits Drone-Based Solutions#

AI is making inroads into smart gadgets. The edge AI equipment industry is growing at a quicker rate due to the flexibility of content operations at the edge. Data accumulation is possible with edge technology. Drones, retail, and business drones are rising in popularity as edge equipment that creates data that has to be processed. Drones with Edge AI are better for construction or manufacturing, transportation surveillance, and mapping (Messous et al., 2020). Drones are a form of edge technology that may be used for a variety of tasks. Visual scanning, picture identification, object identification, and tracking are all used in their work. Drones using artificial intelligence (AI) can recognize objects, things, and people in the same manner that humans can. Edge AI enables effective analysis of the data and output production based on data acquired and delivered to the edge network by drones, and aids in the achievement of the following goals:

  • Object monitoring and identification in real-time. For security and safety purposes, drones can monitor cars and vehicular traffic.
  • Infrastructure that is aging requires proactive upkeep. Bridges, roads, and buildings degrade with time, putting millions of people in danger.
  • Drone-assisted surveillance can help guarantee that necessary repairs are completed on time.
  • Face recognition is a technique for recognizing someone's face whereas this prospect sparks arguments about the technology's morality and validity, AI drones with face recognition can be beneficial in many situations.

Drones may be used by marketing teams to track brand visibility or gather data to evaluate the true influence of brand symbol installation.

Challenges in Drone-Assisted Edge Computing#

Drone computing has its own set of challenges such as:

  • Drone computing differs greatly from ground computation due to the extreme movement of drones. Wireless connectivity to/from a drone, in particular, changes dramatically over time, necessitating meticulous planning of the drone's path, task distribution, and strategic planning.
  • Computational resources must also be properly apportioned over time to guarantee lower data energy usage and operation latency. A drone's power flight plan is critical for extending its service duration (Sedjelmaci et al., 2019).
  • Due to a single drone's limited computing capability, many drones should be considered to deliver computing services continuously, where movement management, collaboration, and distribution of resources of numerous drones all necessitate sophisticated design.

Conclusion#

In drone computing, edge technology guarantees that all necessary work is completed in real-time, directly on the spot. In relief and recovery efforts, a drone equipped with edge technology can save valuable hours (Busacca, Galluccio, and Palazzo, 2020). Edge computing, and subsequently edge AI, have made it possible to take a new and more efficient approach to information analysis, resulting in a plethora of information drone computing options. Drones can give value in a range of applications that have societal implications thanks to edge technology. [Edge data centres] will likely play a key part in this, maybe aiding with the micro-location data needed to run unmanned drone swarms in the future. Increasing commercial drone technology does have the ability to provide advantages outside of addressing corporate objectives.

Read more about the Other Edge Computing Usecases.

How and Why of Edge and AR | Edge Computing Platform

Mobile Edge Computing (MEC) can aid is with real estate property browsing. MEC can provide a two-fold answer. Most buyers look at many residences and don't make decisions without viewing them. Engaging Mobile Edge Computing (MEC) applications like augmented reality (AR) and virtual reality (VR) demonstrate strong opportunities to connect the external and simulated worlds, whether it's putting a virtual couch in your sitting room as part of an interactive retail setting or allowing forecasting refurbishment steered by actual data as well as a layering of step-by-step graphic guidelines. As an element of synchronized and safe processes, the objective is to allow all sides to see what other sees. Combining smartphones and tablets, iPads, and smartwatches with virtual collaborative technologies redefine learning and allow product specialists to help from a distance (Ambrose and Shen, 2021). The goal is to make the distant assessment, replacement, and service of existing goods more efficient.

AR (augmented reality) and VR (virtual reality) are still considered specialized innovations which have yet to be widely accepted. A lot of it comes down to the issues that edge computing can now solve. Following the commercial release of 5G, AR (augmented reality) and VR (virtual reality) encompasses a slew of innovative application cases that, when combined by the edge of the network, will provide significant value to the sector and businesses. Applying virtual layers to live sights is what augmented reality is all about. It can be performed with a device, but in business, wearable technology is much more probably to be used. VR is total absorption in a digital perspective that requires the use of a set of glasses that block the user's view of the world surrounding them (Gerasimova, 2019).

The real estate sector is likely to be transformed by this technology, which some belief would make property hunting more effective. It can help purchaser's picture houses in progress and alleviate the stress of moving to the new location or purchasing from overseas.

Virtual Reality | Edge Computing Technology
Virtual Reality | Edge Computing Technology

What role does Edge and AR play in wooing customers in property hunting?#

With AR (augmented reality), real estate reaches new heights in terms of providing consumers with a more efficient and interesting visual journey. Retailers may now transport them to any destination they like. Offer visitors a digital tour to relieve the stress of having to figure out road signs and building numbers while travelling. People will also have a complete image of the place after they have had the opportunities to explore it. Aside from the ease, it provides to property buyers, it also assists real estate brokers in other ways. Augmented Reality may also be used for branding and advertising (Lang and Sittler, 2012).

The following are some of the marketing aspects of augmented reality for property investment:

  • More dynamic print catalogues and large boards are being developed.
  • Spatial that really can help for-sale properties in real-time.
  • Get an interactive function in the app so a potential buyer may reach out to the retailer right away.
  • A larger audience

How to Use Virtual Reality in Property Hunting?#

Virtual reality performs a vital part in the property market, from real estate development to housing developments. Let's take a look at several ways that may use virtual reality property hunting:

  • Guided Visits: Property hunters, on the whole, compile a list of properties they wish to see and then go to the locations. Some residences are nearby, while some are on the periphery. As a result, planning a visit and narrowing down a list of prospective homes becomes physiologically and psychologically demanding. VR in the housing market efficiently overcomes all of these issues (Pleyers and Poncin, 2020).

  • Participatory Visits: Participatory visits are growing in popularity these days. The key difference between supervised and participatory trips would be that active trips allow property hunters to tap on the display and zoom in on certain areas of the property.

  • Virtual Staging: The term "virtual staging" refers to the technique of electronically furnishing vacant places. Simply defined, VS is a property investment internet marketing tactic that lets customers see themselves in completely furnished homes.

  • Communication: Modern residences and ultra-luxury homes now provide a variety of public utilities. While such products and services provide convenience, they may also be perplexing sometimes.

The Benefits of Edge-VR in Property Hunting:#

  • Time and money-saving.
  • Creates an emotional bond.
  • Profits increased.
  • Experimentation is simple.
  • Reach Out to a Larger Audience

What is the difference between VR and AR?#

AR and VR are both disruptive technologies, they have some significant distinctions:

Virtual Reality (VR)Augmented Reality (AR)
Creates a fantastical world.The real world is mingled with visuals or other factors.
A portable device or a head-mounted gadget is required.Apps are available for smartphones, tablets, and PCs.
Objects cannot be added or changed by customers.It's simple to add, remove, or edit items.

Conclusion for Edge and AR#

Several businesses that are willing to embrace augmented reality are unable to do so due to limitations in their capacity to exchange data on the cloud. Companies may utilise graphical tools and applications like Zoom or Microsoft Exchange for normal communication, but they can't use the same cloud-based solutions for critical organisational activities like learning, support, or technical access because of data security and privacy ownership issues. AR and VR are on the verge of allowing participants to take their immersive experience with others, which is something that most people like about property hunting. In terms of what's feasible, both AR and VR are advancing at breakneck speed (Deaky and Parv, 2017). It's nearly a perfect match for property hunting.

To know the benefits of Edge Computing please read: Differentiation Between Edge Computing and Cloud Computing

5G Monetization | Multi Access Edge Computing

Introduction#

Consumers want quicker, better, more convenient, and revolutionary data speeds in this internet age. Many people are eager to watch movies on their smartphones while also downloading music and controlling many IoT devices. They anticipate a 5G connection, which will provide 100 times quicker speeds, 10 times more capacity, and 10 times reduced latency. The transition to 5G necessitates significant expenditures from service providers. To support new income streams and enable better, more productive, and cost-effective processes and exchanges, BSS must advance in tandem with 5G network installations (Pablo Collufio, 2019). Let's get ready to face the challenges of 5G monetization.

5G and Cloud Computing

cloud gaming services

Why 5G monetization?#

The appropriate 5G monetization solutions may be a superpower, allowing CSPs to execute on 5G's potential from the start. The commercialization of 5G is a hot topic. "Harnessing the 5G consumer potential" and "5G and the Enterprise Opportunity" are two studies that go through the various market prospects. They illustrate that, in the long term, there is a tremendous new income opportunity for providers at various implementation rates, accessible marketplaces, and industry specializations. “Getting creative with 5G business models” highlights how AR/VR gameplay, FWA (Fixed Wireless Access), and 3D video encounters could be offered through B2C, B2B, and B2B2X engagement models in a variety of use scenarios. To meet the 5G commitments of increased network speeds and spectrum, lower latency, assured service quality, connectivity, and adaptable offers, service suppliers must discuss their BSS evolution alongside their 5G installations, or risk being unable to monetize those new use cases when they become a real thing (Munoz et al., 2020). One of the abilities that will enable providers to execute on their 5G promises from day one is 5G monetization. CSPs must update their business support systems (BSS) in tandem with their 5G deployment to meet 5G use scenarios and provide the full promise of 5G, or risk slipping behind in the 5G race for lucrative 5G services (Rao and Prasad, 2018).

Development of the BSS architecture#

To fully realize the benefits of 5G monetization, service providers must consider the growth of their telecom BSS from a variety of angles:

  • Integrations with the network - The new 5G Basic standards specify a 5G Convergent Charging System (CCS) with a 5G Charging Function (CHF) that enables merged charging and consumption limit restrictions in the new service-based architecture that 5G Core introduces.
  • Service orchestration - The emergence of distributed systems and more business services need more complicated and stricter service coordination and fulfillment to ensure that goods, packages, ordeals, including own and third-party products, are negotiated, purchased, and activated as soon as clients require them.
  • Expose - Other BSS apps, surrounding levels such as OSS and Central networks, or 3rd parties and collaborators who extend 5G services with their abilities might all be consumers of BSS APIs (Mor Israel, 2021).
  • Cloud architecture - The speed, reliability, flexibility, and robustness required by 5G networks and services necessitate a new software architecture that takes into consideration BSS deployments in the cloud, whether private, public, or mixed.

Challenges to 5G Monetization#

Even though monetizing 5G networks appears to be a profitable prospect for telecommunications, it is not without flaws. The following are the major challenges:

  • Massive upfront investments in IT infrastructure, network load, and a radio access system, among other things.
  • To get optimal ROI, telecommunications companies must establish viable monetization alternatives (Bega et al., 2019).
  • The commercialization of 5G necessitates a change in telecom operations.

Case of Augmented Reality Games and Intelligent Operations#

With the 5G Core, BSS, and OSS in place, it's time to bring on a new partner: a cloud gaming firm that wants to deliver augmented reality monetization strategies to the operator's users (Feng et al., 2020). For gaming traffic, they want a specific network slice with assured service quality. Through a digital platform, a member in a smart, completely automated network may request their network slice and specify their SLAs. BSS decomposes this order into multiple sub-orders, such as the construction and provisioning of the particular portion through the OSS, once it receives it. The operator additionally uses their catalog-driven design to describe the item offered that its customers will acquire to get onboard new on the partner's network slice all in one location. This deal is immediately disseminated to all relevant systems, including online charging, CRM, and digital platforms, and may be generally consumed.

cloud gaming services

Conclusion#

5G can impact practically every industry and society. Even though there is a lot of ambiguity around 5G and a lot of technical concerns that need to be resolved, one thing is certain: 5G is the next big thing. Finally, whenever a user buys a new plan, he or she is automatically onboarded in the particular portion, often without affecting the system. The partnership will be able to monitor the network health and quality of various types of services for each customer in real time and will be able to take immediate decisions or conduct promotions based on this data (Bangerter et al., 2014). New platforms may adapt to changes based on factual resource use thanks to the BSS cloud architecture. All information regarding purchases, items, network usage, and profitability, among other things, is given back into circulation and utilized as feeds for infrastructure and catalog design in a closed-loop method.

References#

  • Bangerter, B., Talwar, S., Arefi, R., and Stewart, K. (2014). Networks and devices for the 5G era. IEEE Communications Magazine, 52(2), pp.90–96.
  • Bega, D., Gramaglia, M., Banchs, A., Sciancalepore, V. and Costa-Perez, X. (2019). A Machine Learning approach to 5G Infrastructure Market optimization. IEEE Transactions on Mobile Computing, pp.1–1.
  • Feng, S., Niyato, D., Lu, X., Wang, P. and Kim, D.I. (2020). Dynamic Game and Pricing for Data Sponsored 5G Systems With Memory Effect. IEEE Journal on Selected Areas in Communications, 38(4), pp.750–765.
  • Mor Israel (2021). How BSS can enable and empower 5G monetization. online Available at: https://www.ericsson.com/en/blog/2021/4/how-bss-can-enable-and-empower-5g-monetization.
  • Munoz, P., Adamuz-Hinojosa, O., Navarro-Ortiz, J., Sallent, O. and Perez-Romero, J. (2020). Radio Access Network Slicing Strategies at Spectrum Planning Level in 5G and Beyond. IEEE Access, 8, pp.79604–79618.
  • Pablo Collufio, D. (2019). 5G: Where is the Money? e-archivo.uc3m.es. online.
  • Rao, S.K. and Prasad, R. (2018). Telecom Operators’ Business Model Innovation in a 5G World. Journal of Multi Business Model Innovation and Technology, 4(3), pp.149–178.

Learn more about Edge Computing and its usage in different fields. Keep reading our blogs.

Condition-Based Monitoring at Edge - An Asset to Equipment Manufacturers

Large-scale manufacturing units, especially industrial setups, have complicated equipment. Condition-based monitoring at the edge is unprecedented. Can this cost be reduced?

Learn More!

Edge Computing for Condition-based monitoring

Background#

The world is leaning toward the Industrial 4.0 transformation, and so are the manufacturers. The manufacturers are moving towards providing services rather than selling one-off products. Edge computing in manufacturing is used to collect data, manage the data, and run the analytics. It becomes essential to monitor assets, check for any faults, and predict any issues with the devices. Real-time data analysis of assets detects faults so we can carry out maintenance before the failure of the system occurs. We can recognize all the faulty problems with the equipment. Hence, we need condition-based monitoring.

Why Edge Computing for Condition-Based Monitoring?#

Edge Computing for Condition-based monitoring

Edge computing is used to collect data and then label it, further manage the data, and run the system's analytics. Then, we can send alerts to the end enterprise customer and the OEM to notify them when maintenance service is required. Using network edge helps eliminate the pain of collecting data from many disparate systems or machines.

The device located close to the plants or at the edge of the network provides condition-based monitoring, preempts early detection, and correction of designs, ensuring greater productivity for the plant.

Key Challenges and Drivers of Condition-Based Monitoring at Edge#

  • Device Compatibility
  • Flexibility in Service
  • Light Device Support
  • Extractive Industries

Solution#

To detect machinery failures, the equipment has a layer of sensors. These sensors pick up the information from the devices and pass it to a central processing unit.

Here, edge computing plays a crucial part in collecting and monitoring via sensors. The data from the sensors help the OEM and the system administrators monitor the exact device conditions, reducing the load on the end device itself. This way, administrators can monitor multiple sensors together. With the generation of the events, failure on one device can be collated with another device.

Edge also allows processing regardless of where the end device is located or if the asset moves. The same application can be extended to other locations. Alternatively, using edge helps remove the pain of collecting data from many disparate systems/machines in terms of battery.

The edge computing system based on conditions is used to collect statistics, manage the data, and run the analytics without any software hindrance. A system administrator can relax as real-time data analysis detects faults to carry out maintenance before any failure occurs.

Condition-based monitoring can be used in engineering and construction to monitor the equipment. Administrators can use edge computing industrial manufacturing for alerts and analytics.

On-Prem vs. Network Edge#

Given that the on-prem edge is lightweight, it's easy to place anywhere on the location. On the other hand, installing a device is overridden if the manufacturing unit decides to go with the network edge; hence, flexibility is automatically achieved.

How Does Nife Help with Condition-Based Monitoring at Edge?#

Use Nife as a network edge device to compute and deploy applications close to the industries.

Nife works on collecting sensor information, collating it, and providing immediate response time.

Benefits and Results#

  • No difference in application performance (70% improvement from Cloud)
  • Reduce the overall price of the Robots (40% Cost Reduction)
  • Manage and monitor all applications in a single pane of glass
  • Seamlessly deploy and manage navigation functionality (5 min to deploy, 3 min to scale)

Edge computing is an asset to different industries, especially device manufacturers, helping them reduce costs, improve productivity, and ensure that administrators can predict device failures.

You might like to read through this interesting topic of Edge Gaming!